
Theoretical Limitations of
multi-layer Transformer

Paper by: Lijie Chen, Binghui Peng, Hongxun Wu

PALMS Group Lunch, 3/25

Result
Main result:
For any constant 𝐿, there exists an input on 𝑛 tokens for which any 𝐿
layer decoder-only transformer needs polynomial model
dimension, 𝑛Ω(1), to solve.

(Benefits of Chain-of-Thought)
The function from Main Result can be computed by an 𝐿 + 1 layer
decoder-only transformer with poly(log 𝑛) model dimension.
“there exists a task exponentially harder for 𝐿 layer transformers
than for (𝐿 + 1) layer transformers”

Notable omissions: Everything in the appendix – some complexity theoretic results.

Talk Outline

• Discuss decoder-only transformer
• Discuss hard function – sequential composition
• Autoregressive Communication Game
• Reducing transformer to communication model
• Lower-bound on the game

Talk Outline

• Discuss decoder-only transformer
• Discuss hard function – sequential composition
• Autoregressive Communication Game
• Reducing transformer to communication model
• Lower-bound on the game

High-level Architecture
Attention

MLP

Attention

MLP

sequential input

Attention

MLP

sequential output

. . .

Transformer Jargon Symbol

Number of layers/ “depth” 𝐿

Number of heads 𝐻

Embedding Dimension 𝑑

Precision per entry in embedding 𝑝

Model dimension / “width” 𝑑𝐻𝑝

Each layer has several heads which assist with computation

View within a level, ℓ

𝑥1
(ℓ−1)

𝑥2
(ℓ−1)

𝑥3
(ℓ−1)

𝑥𝑛
(ℓ−1)

𝑓𝑡𝑟𝑎𝑛𝑠
ℓ = 𝑓𝑚𝑙𝑝

ℓ ∘ 𝑓𝑎𝑡𝑡𝑛
ℓ : 𝑅𝑑𝐻 𝑛

→ 𝑅𝑑𝐻 𝑛

𝑄ℓ,1, 𝐾ℓ,1, 𝑉ℓ,1

𝑄ℓ,2, 𝐾ℓ,2, 𝑉ℓ,2

𝑄ℓ,3, 𝐾ℓ,3, 𝑉ℓ,3

𝑄ℓ,𝐻, 𝐾ℓ,𝐻, 𝑉ℓ,𝐻

Transformer

. . .

. . .

(𝑦1
ℓ,1, 𝑦2

ℓ,1, … , 𝑦𝑛
ℓ,1)

(𝑦1
ℓ,2, 𝑦2

ℓ,2, … , 𝑦𝑛
ℓ,2)

(𝑦1
ℓ,3, 𝑦2

ℓ,3, … , 𝑦𝑛
ℓ,3)

(𝑦1
ℓ,𝐻, 𝑦2

ℓ,𝐻, … , 𝑦𝑛
ℓ,𝐻)

𝑦1
ℓ

𝑦2
ℓ

𝑦3
ℓ

𝑦𝑛
ℓ

. . .

cv

𝑥1
(ℓ)

= 𝑔ℓ 𝑦1
ℓ

𝑥2
(ℓ)

= 𝑔ℓ 𝑦1
ℓ

𝑥3
(ℓ)

= 𝑔ℓ 𝑦1
ℓ

𝑥𝑛
ℓ

= 𝑔ℓ 𝑦𝑛
ℓ

. . .

Heads

Input SequenceO
ut

pu
t S

eq
ue

nc
e

MLP (behaves as 𝑔ℓ)

View within a head, (ℓ, ℎ)

𝑥1
(ℓ−1)

𝑥2
(ℓ−1)

𝑥3
(ℓ−1)

𝑥𝑛
(ℓ−1)

The function 𝑓𝑎𝑡𝑡𝑛
ℓ is made up of 𝐻 heads, each responsible for

a sequence (𝑦1
ℓ,ℎ, 𝑦2

ℓ,ℎ, … , 𝑦𝑛
ℓ,ℎ)

Computation is parametrized by Qℓ,ℎ, Kℓ,ℎ, Vℓ,ℎ ∈ 𝑅𝑑 ×𝑑𝐻

Below: Generating 𝑦𝑖
ℓ,ℎ

. . .

Input Sequence

𝑥𝑖
(ℓ−1)

. . .

𝑦1
ℓ,ℎ𝑦𝑖−1

ℓ,ℎ 𝑦2
ℓ,ℎ…??? …

Output Sequence

View within a head, (ℓ, ℎ)

𝑥1
(ℓ−1)

𝑥2
(ℓ−1)

𝑥3
(ℓ−1)

𝑥𝑛
(ℓ−1)

The function 𝑓𝑎𝑡𝑡𝑛
ℓ is made up of 𝐻 heads, each responsible for

a sequence (𝑦1
ℓ,ℎ, 𝑦2

ℓ,ℎ, … , 𝑦𝑛
ℓ,ℎ)

Computation is parametrized by Qℓ,ℎ, Kℓ,ℎ, Vℓ,ℎ ∈ 𝑅𝑑 ×𝑑𝐻

Below: Generating 𝑦𝑖
ℓ,ℎ

𝑄ℓ,ℎ, 𝐾ℓ,ℎ

. . .

Input Sequence

𝑥𝑖
(ℓ−1)

. . .

𝑉ℓ,ℎ
(𝑉𝑥1

ℓ−1
, 𝑉𝑥2

ℓ−1
, … , 𝑉𝑥𝑖

ℓ−1
)

(𝑄𝑥𝑖, 𝐾𝑥1 , 𝑄𝑥𝑖, 𝐾𝑥2 , … , 𝑄𝑥𝑖, 𝐾𝑥𝑖)𝛼𝑖,𝑗 𝑗∈ 𝑖
softmax

𝑦𝑖 = ෍

𝑗≤𝑖

𝛼𝑖,𝑗𝑉𝑥𝑗

𝑦1
ℓ,ℎ𝑦𝑖−1

ℓ,ℎ 𝑦2
ℓ,ℎ…??? …

Output Sequence

Formalisms

Takeaways
Within each head, computing 𝑦𝑖

ℓ,ℎ has no (direct) dependence previous or future outputs in the
sequence. Given the input sequence, one can think of these being computed “in parallel”

𝑦𝑖
ℓ,ℎ depends only on (𝑥1

(ℓ−1)
, 𝑥2

(ℓ−1)
, … , 𝑥𝑖

ℓ−1
)

There are succinct linear forms for most computation! Sadly, this will be ignored in this talk.

Talk Outline

• Discuss decoder-only transformer
• Discuss hard function – sequential composition
• Autoregressive Communication Game
• Reducing transformer to communication model
• Lower-bound on the game

Intuition

Consider input that reverses natural order of computation: earlier
tokens have to “process” later tokens

Input sequence: (𝑧𝐿 , 𝑧𝐿−1, … , 𝑧0, 𝑤)

Output (roughly): 𝑧𝐿(𝑧𝐿−1 ⋯ (𝑧0 𝑤)

We formalize the notion with a more ”granular” 𝑤.

L-sequential function composition

𝑤1

𝑤2

𝑤3

𝑤𝐿−1

𝑧0 𝑧1 𝑧2 𝑧3 𝑧𝐿−1 𝑧𝐿…

…

L-sequential function composition

𝑤1

𝑤2

𝑤3

𝑤𝐿−1

𝑧0 𝑧1 𝑧2 𝑧3 𝑧𝐿−1 𝑧𝐿

𝑖1

…

…

L-sequential function composition

𝑤1

𝑤2

𝑤3

𝑤𝐿−1

𝑧0 𝑧1 𝑧2 𝑧3 𝑧𝐿−1 𝑧𝐿

𝑖1

𝑖2

…

…

L-sequential function composition

𝑤1

𝑤2

𝑤3

𝑤𝐿−1

𝑧0 𝑧1 𝑧2 𝑧3 𝑧𝐿−1 𝑧𝐿

𝑖1

𝑖2

𝑖3

…

…

L-sequential function composition

𝑤1

𝑤2

𝑤3

𝑤𝐿−1

𝑧0 𝑧1 𝑧2 𝑧3 𝑧𝐿−1 𝑧𝐿

𝑖1

𝑖2

𝑖3

…

𝑖𝐿−1

𝑖𝐿

…

Desired output!

Formalisms

Some more observations…

It’s natural to think about 𝑧ℓ: 𝑁ℓ−1 → 𝑁ℓ−1 as 𝑧ℓ ∈ 𝐴ℓ where 𝐴ℓ = [𝑁ℓ−1
𝑁ℓ−1]

and the special case 𝐴0 = [𝑚].

For the rest of the talk, we’ll use w = z−1 interchangeably. Thus, 𝐴−1 =
𝑛1 × 𝑛2 × ⋯ × [𝑛𝐿−1]

After fixing ෥𝑧0, ෥𝑧1, … , ෥𝑧ℓ reason that 𝑖ℓ dependent only on (𝑤1, 𝑤2, … , 𝑤𝑙−1)
and independent of 𝑤𝑙. This is the for induction!

Talk Outline

• Discuss decoder-only transformer
• Discuss hard function – sequential composition
• Autoregressive Communication Game
• Reducing transformer to communication model
• Lower-bound on the game

Multiparty Communication
Suppose there is some function 𝑓: 𝑋1 × 𝑋2 × ⋯ × 𝑋𝑛 → 𝑌, and player 𝑖 receives 𝑥𝑖 ∈ 𝑋𝑖
How much information (bits) do they have to share in order to compute 𝑓?

Multiparty Communication
Suppose there is some function 𝑓: 𝑋1 × 𝑋2 × ⋯ × 𝑋𝑛 → 𝑌, and player 𝑖 receives 𝑥𝑖 ∈ 𝑋𝑖
How much information (bits) do they have to share in order to compute 𝑓?

…

In the “blackboard” model, each round 𝑟 = 1, 2, … 𝑟, player 𝑖 = 1, 2, … 𝑛 writes Π𝑟,𝑖 visible to everyone
The transcript is given by the contents of the blackboard at termination!

Many “memory” lower bounds follow from a reduction to this game, where one argues that a transcript
of small size can’t compute 𝑓 too well…

𝑀1
𝑟 𝑀2

𝑟 𝑀𝑛−1
𝑟

𝑀𝑛
𝑟

𝑀𝑟−1
𝑀𝑟−1 ∪ 𝑀1

𝑟
𝑀𝑟−1 ∪ ⋃𝑀𝑖

𝑟
𝑀𝑟−1 ∪ ⋃𝑀𝑖

𝑟

Output: f(𝑀𝑅)

Autoregressive Game
To prove the sharper lower bounds, one should reduce to the weakest possible communication game

Input: 𝐿 + 2 players, 𝑖 ∈ −1: 𝐿 each receiving 𝑧𝑖 in 𝑚𝑖 “tokens”

Game: At epoch ℓ = 0, nothing has happened. For epoch ℓ ∈ 1: 𝐿 and for player 𝑖 ∈ [−1: 𝐿], execute the
game rooted at player 𝑖

𝑋𝐿 𝑋𝐿−1 𝑋𝐿−2 … 𝑋𝑖

1. player 𝑖 sends its information to all players 𝑗 ∈ [𝑖 + 1: 𝐿]
2. player 𝑗 sends Π𝑗,𝑖

ℓ of size at most 2𝐵 ⋅ 𝑚𝑖 back, depending on 𝑋𝑗
ℓ and 𝑋𝑖

ℓ

𝑋𝐿
ℓ 𝑋𝐿−1

ℓ 𝑋𝐿−2
ℓ … 𝑋𝑖

ℓ

𝑋𝐿 𝑋𝐿−1 𝑋𝐿−2 … 𝑋0 𝑋−1

Autoregressive Game
To prove the sharper lower bounds, one should reduce to the weakest possible communication game

Input: 𝐿 + 2 players, 𝑖 ∈ −1: 𝐿 each receiving 𝑧𝑖 in 𝑚𝑖 “tokens”, message bits 𝐵

Game: At epoch ℓ = 0, nothing has happened. For epoch ℓ ∈ 1: 𝐿 and for player 𝑖 ∈ [−1: 𝐿], execute the
game rooted at player 𝑖

𝑋𝐿 𝑋𝐿−1 𝑋𝐿−2 … 𝑋𝑖

1. player 𝑖 sends its information to all players 𝑗 ∈ [𝑖 + 1: 𝐿]
2. player 𝑗 sends Π𝑗,𝑖

ℓ of size at most 2𝐵 ⋅ 𝑚𝑖 back, depending on 𝑋𝑗
ℓ and 𝑋𝑖

ℓ
3. player 𝑖 accumulates responses: 𝑋𝑖

ℓ+1 = 𝑋𝑖
ℓ ∪ ⋃𝑗>𝑖 Π𝑗,𝑖

ℓ

𝑋𝐿 𝑋𝐿−1 𝑋𝐿−2 … 𝑋𝑖

update!!

𝑋𝐿 𝑋𝐿−1 𝑋𝐿−2 … 𝑋0 𝑋−1

At the end of 𝐿 epochs, player −1 computes a function on its information, and outputs a response!

Takeaways
Important to remember that player 𝑗 does not “remember” its responses to i < 𝑗
⇒ the game rooted at 𝑗 is oblivious to the game rooted at 𝑖,
⇒ think about the games executing “in parallel” (familiar?)

The player at the end of the line has the “strongest” communication power (familiar?), so it’s necessary to
limit its input size

To avoid “short-circuit,” however, the first input should be important for the task.

Talk Outline

• Discuss decoder-only transformer
• Discuss hard function – sequential composition
• Autoregressive Communication Game
• Reducing transformer to communication model
• Lower-bound on the game

Main Lemma

In fact, we can go further: any transformer Γ = 𝐾ℓ,ℎ, 𝑄ℓ,ℎ, 𝑉ℓ,ℎ
ℓ∈ 𝐿 ,ℎ∈ 𝐻

 can be simulated in 𝐿 epochs

by an autoregressive communication protocol

Main Lemma’s Main Claim

sketch

𝑋𝐿 𝑋𝐿−2 … 𝑋𝑖𝑋𝐿 𝑋𝑗 … 𝑋𝑖

Let 𝐸𝑗 be the set of tokens making up input 𝑋𝑗. Clearly, at ℓ = 0, the claim holds. We show by
induction if it will hold at ℓ + 1. Consider the game rooted at 𝑋𝑖

…

Using the first set from Π𝑗,𝑖
ℓ we can compute external values and the second set to collect external

key-query products.

Putting it together with local computation, (using internal values, key-query products, and 𝑔ℓ), the
update to 𝑋𝑖

ℓ contains enough information to compute 𝑋𝑖
ℓ+1. This completes the induction.

Sequential Function Protocol

𝑧𝐿 𝑧𝐿−1 𝑧𝐿−2 … 𝑧0 𝑧−1

Suppose that the following input is given (read from left-to-right) to a transformer, who
computes sequential function composition:

where 𝑧𝑖 is defined using 𝑁𝑖 tokens (one for each input) whenever 𝑖 ≥ 1, and 𝑧0, 𝑧−1 are defined in 1 token each.

By the previous claim, a transformer on this token sequence “solving” the sequential function problem can
be turned into a communication protocol

Talk Outline

• Discuss decoder-only transformer
• Discuss hard function – sequential composition
• Autoregressive Communication Game
• Reducing transformer to communication model
• Lower-bound on the game

Remaining Work

Lemma (Reduction): If there is an 𝐿 layer decoder only transformer solving sequential composition, then there
is a deterministic autoregressive communication protocol using at most 𝐿 epochs and 𝐵 = 𝐻𝑑𝑝 message bits.

Lemma (Lower Bound): There is no autoregressive communication protocol solving sequential composition
with 𝐿 epochs and 𝐵 = 𝐻𝑑𝑝 message bits.

Main Thm follows after examining parameters (not in this talk!)

Communication Rectangles
Rectangles are a tool for combinatorial analysis of communication protocols

Often, when players are restricted to a subset of their input, the protocol has some
shared behavior across all inputs in this subset

Note: Rectangles are not arbitrary subsets of 𝐴1 × 𝐴2 × 𝐴3, but have to follow the
”product” nature which gives them this name!

𝐴1

𝐴2

𝐴3
𝑋3

𝑋1

𝑋2

𝑋1 ⊂ 𝐴1, 𝑋2 ⊂ 𝐴2, 𝑋3 ⊂ 𝐴3

Players [ℓ, 𝐿] Players [−1, ℓ − 1]

𝑍<ℓ = 𝐴−1 × 𝑍0 × ⋯ × 𝑍ℓ−1𝑅≥ℓ = 𝑍ℓ × 𝑍ℓ+1 × ⋯ × 𝑍𝐿

A pair of rectangles (𝑍<ℓ, 𝑅≥ℓ) is called indistinguishable if, fixing any ෪𝑍<ℓ ∈ 𝑍<ℓ,
each ෪𝑅≥ℓ ∈ 𝑅≥ℓ produces the same transcript after ℓ epochs (round of
communication)

Formalisms

Transcript
It’s worth formalizing a little further what we mean by “transcript” Λℓ on (𝑍<ℓ, 𝑅≥ℓ).

Players [ℓ, 𝐿] Players [−1, ℓ − 1]

𝑍<ℓ = 𝐴−1 × 𝑍0 × ⋯ × 𝑍ℓ−1𝑅≥ℓ = 𝑍ℓ × 𝑍ℓ+1 × ⋯ × 𝑍𝐿

all messages crossing in each epoch ℓ′ ∈ [ℓ]

In other words, Λℓ is indexed by ෪𝑍<ℓ ∈ 𝑍<ℓ, ෪𝑅≥ℓ ∈ 𝑅≥ℓ, ℓ′ ∈ ℓ , 𝑗 ∈ ℓ, 𝐿 , 𝑖 ∈ [−1, ℓ − 1]

Key: If the decomposition is indistinguishable, what gets “sent back” is independent of ේ𝑅≥ℓ, thus
we can index Λℓ without it!

Formalism
The information from the previous slide is densely stuffed into formalisms here…

Here, we are “indexing” Λℓ without 𝑅≥ℓ on all epochs ℓ′ ∈ ℓ

should this be range lol?

Contradiction
Player 𝐿 Players [−1, 𝐿 − 1]

Suppose a successful protocol admits indistinguishable (𝑅≥𝐿, 𝑍<𝐿)

Then, for all ෥𝑧𝐿 ∈ 𝑅≥𝐿, the output ෥𝑧𝐿 (𝑤𝐿−1, 𝑖𝐿−1) should be the same!

Clearly, there are 𝑛𝐿−1 possibilities for 𝑤𝐿−1 (recall 𝑍−1 = 𝐴−1).

Thus, ෥𝑧𝐿 is a function from [𝑁𝐿−1] → 𝑁𝐿−1 fixed on 𝑛𝐿−1|ℐ𝐿−1| input
values, so we have the following bound:

𝑅≥𝐿
𝑍<𝐿

why can we get away with multiplying?

Sufficient for contradiction: There exists (𝑅≥𝐿, 𝑍<𝐿) such that both |𝑅≥𝐿| and |ℐ𝐿−1| large!

Formalisms

Formalisms

Remaining Objective
It suffices to show that there exists a large indistinguishable separation for the final player.

This is shown inductively at each level ℓ ∈ [2 ∶ 𝐿 − 1]

Base Case: For ℓ = 2, one can construct (𝑍<2, 𝑅≥2) such that messages to players −1, 0, 1 are the
same for all ෪𝑅≥2 ∈ 𝑅≥2 in the first 2 epochs. [The transcripts are determined entirely through ෪𝑍<2 ∈
𝑍<2]

Inductive Hypothesis: Suppose one can find (𝑍<ℓ, 𝑅≥ℓ) such that messages to players [−1, ℓ − 1]
are the same for all ෪𝑅≥ℓ ∈ 𝑅≥ℓ through each epoch ℓ′ ∈ [ℓ].

Inductive Step: There exists (𝑍<ℓ+1, 𝑅≥ℓ+1) such that messages to players [−1, ℓ] are the same for
all ෫𝑅≥ℓ+1 ∈ 𝑅≥ℓ+1 through each epoch ℓ′ ∈ [ℓ + 1].

Each of these decomposition must be “large enough” so that we fail at L!

Formalisms

Base Case
The first order of business it to select 𝑍<2 = 𝑍−1 × 𝑍0 × 𝑍1

 𝑍−1 is fixed (why?) and since |𝑍0| ⊂ [𝑚] has size 𝑥0, we can take 𝑍0 = [𝑥0] without loss of generality (why?)

So, we only have to select 𝑍1 ⊆ 𝐴1. Consider the set of first epoch messages from player 1 to -1:

Each z ∈ 𝐴1 realizes a particular tuple above. There are 22𝐻𝑑𝑝 𝑍−1 = 22𝐻𝑑𝑝𝑛1⋯𝑛𝐿−1 total possible tuples, so
there is some 𝑆 ⊆ 𝐴1 that produces the same tuple (possible transcripts) of size at least A1 2−2𝐻𝑑𝑝𝑛1⋯𝑛𝐿−1 .

The upshot is as follows:

Fixing Transcripts: Player -1
Now that we’ve ”determined” 𝑍<2, it remains to select 𝑅≥2, which we do by “fixing transcripts” (i.e.,
repeatedly applying the consistency property). We start with the first player on the first epoch.

Fixing Transcripts: Player -1
Now that we’ve ”determined” 𝑍<2, it remains to select 𝑅≥2, which we do by “fixing transcripts” (i.e.,
repeatedly applying the consistency property). We start with the first player on the first epoch.

Fixing Transcripts: Player -1
We continue examining player 1, but on the second epoch. The way we selected 𝑍1 ⊂ 𝑆 becomes
essential in this part!

Fixing Transcripts: Player -1
We continue examining player 1, but on the second epoch. The way we selected 𝑍1 ⊂ 𝑆 becomes
essential in this part!

Fixing Transcripts: Players 0, 1
We are more crude with players 0 and 1 (why can we afford this?)

Inductive Step
We have a decomposition 𝑍<ℓ, 𝑅≥ℓ which is indistinguishable through ℓ epochs, we’d like to distill
𝑍<ℓ+1, 𝑅≥ℓ+1 which holds through ℓ + 1 epochs

Players [ℓ, 𝐿] Players [−1, ℓ − 1]

𝑍<ℓ = 𝐴−1 × 𝑍0 × ⋯ × 𝑍ℓ−1𝑅≥ℓ = 𝑍ℓ × 𝑍ℓ+1 × ⋯ × 𝑍𝐿

Players [ℓ + 1, 𝐿] ℓ Players [−1, ℓ − 1]

𝑍<ℓ = 𝐴−1 ×? × ⋯ ×??𝑅≥ℓ+1 =?×?× ⋯ ×?

Is there an easy way to fill in the ? above?

holds for ℓ′ ∈ [ℓ + 1]

holds for ℓ′ ∈ [ℓ]

Inductive Step
We have a decomposition 𝑍<ℓ, 𝑅≥ℓ which is indistinguishable through ℓ epochs, we’d like to distill
𝑍<ℓ+1, 𝑅≥ℓ+1 which holds through ℓ + 1 epochs

Players [ℓ, 𝐿] Players [−1, ℓ − 1]

𝑍<ℓ = 𝐴−1 × 𝑍0 × ⋯ × 𝑍ℓ−1𝑅≥ℓ = 𝑍ℓ × 𝑍ℓ+1 × ⋯ × 𝑍𝐿

Players [ℓ + 1, 𝐿] ℓ Players [−1, ℓ − 1]

𝑍<ℓ = 𝐴−1 ×? × ⋯ ×??𝑅≥ℓ+1 =?×?× ⋯ ×?

Is there an easy way to fill in the ? above? No , too many moving parts!

holds for ℓ′ ∈ [ℓ + 1]

holds for ℓ′ ∈ [ℓ]

Inductive Step
We have a decomposition 𝑍<ℓ, 𝑅≥ℓ which is indistinguishable through ℓ epochs, we’d like to distill
𝑍<ℓ+1, 𝑅≥ℓ+1 which holds through ℓ + 1 epochs

Players [ℓ, 𝐿] Players [−1, ℓ − 1]

𝑍<ℓ = 𝐴−1 × 𝑍0 × ⋯ × 𝑍ℓ−1𝑅≥ℓ = 𝑍ℓ × 𝑍ℓ+1 × ⋯ × 𝑍𝐿

Players [ℓ + 1, 𝐿] ℓ Players [−1, ℓ − 1]

𝑍<ℓ = 𝐴−1 ×? × ⋯ ×??𝑅≥ℓ+1 =?×?× ⋯ ×?

holds for ℓ′ ∈ [ℓ + 1]

holds for ℓ′ ∈ [ℓ]

Order of attack:
 1. Determine the new 𝑍ℓ and a superset of the new 𝑅≥ℓ (yet subset of old)
 2. “Fix the transcripts” between [ℓ + 1, 𝐿] and [−1, ℓ − 1] on just the first ℓ epochs
 3. “Fix the transcripts” between [ℓ + 1, 𝐿] and [−1, ℓ − 1] on the ℓ + 1 epoch
 4. “Fix the transcript” for player ℓ over all ℓ + 1 epochs

Inductive Step
We have a decomposition 𝑍<ℓ, 𝑅≥ℓ which is indistinguishable through ℓ epochs, we’d like to distill
𝑍<ℓ+1, 𝑅≥ℓ+1 which holds through ℓ + 1 epochs

Players [ℓ, 𝐿] Players [−1, ℓ − 1]

𝑍<ℓ = 𝐴−1 × 𝑍0 × ⋯ × 𝑍ℓ−1𝑅≥ℓ = 𝑍ℓ × 𝑍ℓ+1 × ⋯ × 𝑍𝐿

Players [ℓ + 1, 𝐿] ℓ Players [−1, ℓ − 1]

𝑍<ℓ = 𝐴−1 ×? × ⋯ ×??𝑅≥ℓ+1 =?×?× ⋯ ×?

holds for ℓ′ ∈ [ℓ + 1]

holds for ℓ′ ∈ [ℓ]

Order of attack:
 1. Determine the new 𝒁ℓ and a superset of the new 𝑹≥ℓ (yet subset of old)
 2. “Fix the transcripts” between [ℓ + 1, 𝐿] and [−1, ℓ − 1] on just the first ℓ epochs
 3. “Fix the transcripts” between [ℓ + 1, 𝐿] and [−1, ℓ − 1] on the ℓ + 1 epoch
 4. “Fix the transcript” for player ℓ over all ℓ + 1 epochs

Building the new 𝑍<ℓ+1
The following technical lemma essentially one-shots picking 𝑍<ℓ

We get all the properties we dreamed about 𝑍<ℓ+1 = 𝑍ℓ × 𝑍<ℓ, besides consistency

As with the base case, we’ll whittle down 𝑆1
ℓ in the following steps until we get an indistinguishable rectangle.

Inductive Step
We have a decomposition 𝑍<ℓ, 𝑅≥ℓ which is indistinguishable through ℓ epochs, we’d like to distill
𝑍<ℓ+1, 𝑅≥ℓ+1 which holds through ℓ + 1 epochs

Players [ℓ, 𝐿] Players [−1, ℓ − 1]

𝑍<ℓ = 𝐴−1 × 𝑍0 × ⋯ × 𝑍ℓ−1𝑅≥ℓ = 𝑍ℓ × 𝑍ℓ+1 × ⋯ × 𝑍𝐿

Players [ℓ + 1, 𝐿] ℓ Players [−1, ℓ − 1]

𝑍<ℓ = 𝐴−1 ×? × ⋯ ×??𝑅≥ℓ+1 =?×?× ⋯ ×?

holds for ℓ′ ∈ [ℓ + 1]

holds for ℓ′ ∈ [ℓ]

Order of attack:
 1. Determine the new 𝑍ℓ and a superset of the new 𝑅≥ℓ (yet subset of old)
 2. “Fix the transcripts” between [ℓ + 𝟏, 𝑳] and [−𝟏, ℓ − 𝟏] on just the first ℓ epochs
 3. “Fix the transcripts” between [ℓ + 1, 𝐿] and [−1, ℓ − 1] on the ℓ + 1 epoch
 4. “Fix the transcript” for player ℓ over all ℓ + 1 epochs

”Fixing the transcript” I
Recall we have constructed a decomposition (Z<ℓ+1, S1) which is not necessarily indistinguishable.

In this step, we consider the transcripts only between players [ℓ + 1, 𝐿] and [−1, ℓ − 1] in just the
first ℓ epochs…

Question: Does (Z<ℓ+1, S1) behave indistinguishably? If so, what transcript does it adopt?

”Fixing the transcript” I
Recall we have constructed a decomposition (Z<ℓ+1, S1) which is not necessarily indistinguishable.

In this step, we consider the transcripts only between players [ℓ + 1, 𝐿] and [−1, ℓ − 1] in just the
first ℓ epochs…

Question: Does (Z<ℓ+1, S1) behave indistinguishably? If so, what transcript does it adopt?

Answer: Yes!! Note that S1 ⊂ 𝑅≥ℓ and we consider assignments in Z<ℓ up to ℓ epochs … sub-
rectangles of indistinguishable rectangles remain indistinguishable! We adopt the transcript of the
inductive hypothesis.

”Fixing the transcript” I

Inductive Step
We have a decomposition 𝑍<ℓ, 𝑅≥ℓ which is indistinguishable through ℓ epochs, we’d like to distill
𝑍<ℓ+1, 𝑅≥ℓ+1 which holds through ℓ + 1 epochs

Players [ℓ, 𝐿] Players [−1, ℓ − 1]

𝑍<ℓ = 𝐴−1 × 𝑍0 × ⋯ × 𝑍ℓ−1𝑅≥ℓ = 𝑍ℓ × 𝑍ℓ+1 × ⋯ × 𝑍𝐿

Players [ℓ + 1, 𝐿] ℓ Players [−1, ℓ − 1]

𝑍<ℓ = 𝐴−1 ×? × ⋯ ×??𝑅≥ℓ+1 =?×?× ⋯ ×?

holds for ℓ′ ∈ [ℓ + 1]

holds for ℓ′ ∈ [ℓ]

Order of attack:
 1. Determine the new 𝑍ℓ and a superset of the new 𝑅≥ℓ (yet subset of old)
 2. “Fix the transcripts” between [ℓ + 1, 𝐿] and [−1, ℓ − 1] on just the first ℓ epochs
 3. “Fix the transcripts” between [ℓ + 𝟏, 𝑳] and [−𝟏, ℓ − 𝟏] on the ℓ + 𝟏 epoch
 4. “Fix the transcript” for player ℓ over all ℓ + 1 epochs

“Fixing the transcript” II
The first nontrivial step, where we finally see a distillation of S≥ℓ+1!

In this step, we consider the transcripts only between players [ℓ + 1, 𝐿] and [−1, ℓ − 1] on the ℓ + 1 epoch

Observation: Using the previous “fixing the transcript,” players [−1, ℓ − 1] receive the same transcript on
all ℓ′ ∈ ℓ of which 𝑧ℓ ∈ 𝑍ℓ we select

Conclusion: The message sent at the ℓ + 1 epoch is independent of 𝑍ℓ!

“Fixing the transcript” II
The first nontrivial step, where we finally see a distillation of S≥ℓ+1!

In this step, we consider the transcripts only between players [ℓ + 1, 𝐿] and [−1, ℓ − 1] on the ℓ + 1 epoch

Observation: Using the previous “fixing the transcript,” players [−1, ℓ − 1] receive the same transcript on
all ℓ′ ∈ ℓ of which 𝑧ℓ ∈ 𝑍ℓ we select

Conclusion: The message sent at the ℓ + 1 epoch is independent of 𝑍ℓ!

Therefore, we can write the transcript tuple without indexing 𝑧ℓ

“Fixing the transcript” II
With some more thought, the following lemma follows from observation

By counting transcripts Φℓ+1 and again using pigeonhole, we find:

We set 𝑇≥ℓ+1 = 𝑆 ෩Φℓ+1 ⊂ 𝑆≥ℓ+1 to be our first refinement!!

Inductive Step
We have a decomposition 𝑍<ℓ, 𝑅≥ℓ which is indistinguishable through ℓ epochs, we’d like to distill
𝑍<ℓ+1, 𝑅≥ℓ+1 which holds through ℓ + 1 epochs

Players [ℓ, 𝐿] Players [−1, ℓ − 1]

𝑍<ℓ = 𝐴−1 × 𝑍0 × ⋯ × 𝑍ℓ−1𝑅≥ℓ = 𝑍ℓ × 𝑍ℓ+1 × ⋯ × 𝑍𝐿

Players [ℓ + 1, 𝐿] ℓ Players [−1, ℓ − 1]

𝑍<ℓ = 𝐴−1 ×? × ⋯ ×??𝑅≥ℓ+1 =?×?× ⋯ ×?

holds for ℓ′ ∈ [ℓ + 1]

holds for ℓ′ ∈ [ℓ]

Order of attack:
 1. Determine the new 𝑍ℓ and a superset of the new 𝑅≥ℓ (yet subset of old)
 2. “Fix the transcripts” between [ℓ + 1, 𝐿] and [−1, ℓ − 1] on just the first ℓ epochs
 3. “Fix the transcripts” between [ℓ + 1, 𝐿] and [−1, ℓ − 1] on the ℓ + 1 epoch
 4. “Fix the transcript” for player ℓ over all ℓ + 𝟏 epochs

“Fixing the transcript” III
The final step is to “fix the transcript” sent to player ℓ by players ℓ + 1, 𝐿 in all ℓ + 1 epochs.

Doing this will complete the induction, so the distillation of 𝑇≥ℓ+1 we retrieve will be the output 𝑅≥ℓ+1!

Thus, we set 𝑅≥ℓ+1 = 𝑇(෩Ψ) and note that it satisfies all the desired properties. The induction is complete!

Thanks for listening!! ☺

Via X/Twitter

	Slide 1: Theoretical Limitations of multi-layer Transformer
	Slide 2: Result
	Slide 3: Talk Outline
	Slide 4: Talk Outline
	Slide 5: High-level Architecture
	Slide 6: View within a level, ℓ
	Slide 7: View within a head, open paren ℓ,, h close paren
	Slide 8: View within a head, open paren ℓ,, h close paren
	Slide 9: Formalisms
	Slide 10: Takeaways
	Slide 11: Talk Outline
	Slide 12: Intuition
	Slide 13: L-sequential function composition
	Slide 14: L-sequential function composition
	Slide 15: L-sequential function composition
	Slide 16: L-sequential function composition
	Slide 17: L-sequential function composition
	Slide 18: Formalisms
	Slide 19: Some more observations…
	Slide 20: Talk Outline
	Slide 21: Multiparty Communication
	Slide 22: Multiparty Communication
	Slide 23: Autoregressive Game
	Slide 24: Autoregressive Game
	Slide 25: Takeaways
	Slide 26: Talk Outline
	Slide 27: Main Lemma
	Slide 28: Main Lemma’s Main Claim
	Slide 29: Sequential Function Protocol
	Slide 30: Talk Outline
	Slide 31: Remaining Work
	Slide 32: Communication Rectangles
	Slide 33: Formalisms
	Slide 34: Transcript
	Slide 35: Formalism
	Slide 36: Contradiction
	Slide 37: Formalisms
	Slide 38: Formalisms
	Slide 39: Remaining Objective
	Slide 40: Formalisms
	Slide 41: Base Case
	Slide 42: Fixing Transcripts: Player -1
	Slide 43: Fixing Transcripts: Player -1
	Slide 44: Fixing Transcripts: Player -1
	Slide 45: Fixing Transcripts: Player -1
	Slide 46: Fixing Transcripts: Players 0, 1
	Slide 47: Inductive Step
	Slide 48: Inductive Step
	Slide 49: Inductive Step
	Slide 50: Inductive Step
	Slide 51: Building the new cap Z sub , less than ℓ plus 1 end subscript
	Slide 52: Inductive Step
	Slide 53: ”Fixing the transcript” I
	Slide 54: ”Fixing the transcript” I
	Slide 55: ”Fixing the transcript” I
	Slide 56: Inductive Step
	Slide 57: “Fixing the transcript” II
	Slide 58: “Fixing the transcript” II
	Slide 59: “Fixing the transcript” II
	Slide 60: Inductive Step
	Slide 61: “Fixing the transcript” III
	Slide 62: Thanks for listening!! 

