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Result
Main result:
For any constant 𝐿, there exists an input on 𝑛 tokens for which any 𝐿 
layer decoder-only transformer needs polynomial model 
dimension, 𝑛Ω(1), to solve.

(Benefits of Chain-of-Thought)
The function from Main Result can be computed by an 𝐿 + 1 layer 
decoder-only transformer with poly(log 𝑛 ) model dimension. 
“there exists a task exponentially harder for 𝐿 layer transformers 
than for (𝐿 + 1) layer transformers”

Notable omissions: Everything in the appendix – some complexity theoretic results.



Talk Outline

• Discuss decoder-only transformer
• Discuss hard function – sequential composition
• Autoregressive Communication Game
• Reducing transformer to communication model
• Lower-bound on the game
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High-level Architecture
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Transformer Jargon Symbol

Number of layers/ “depth” 𝐿

Number of heads 𝐻

Embedding Dimension 𝑑

Precision per entry in embedding 𝑝

Model dimension / “width” 𝑑𝐻𝑝

Each layer has several heads which assist with computation
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View within a head, (ℓ, ℎ)
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View within a head, (ℓ, ℎ)
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Takeaways
Within each head, computing 𝑦𝑖

ℓ,ℎ has no (direct) dependence previous or future outputs in the 
sequence. Given the input sequence, one can think of these being computed “in parallel”

𝑦𝑖
ℓ,ℎ depends only on (𝑥1

(ℓ−1)
, 𝑥2

(ℓ−1)
, … , 𝑥𝑖

ℓ−1
)

There are succinct linear forms for most computation! Sadly, this will be ignored in this talk. 
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Intuition

Consider input that reverses natural order of computation: earlier 
tokens have to “process” later tokens

Input sequence: (𝑧𝐿 , 𝑧𝐿−1, … , 𝑧0, 𝑤) 

Output (roughly): 𝑧𝐿(𝑧𝐿−1 ⋯ (𝑧0 𝑤 )

We formalize the notion with a more ”granular” 𝑤.



L-sequential function composition
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L-sequential function composition
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Some more observations…

It’s natural to think about 𝑧ℓ: 𝑁ℓ−1 → 𝑁ℓ−1  as 𝑧ℓ ∈ 𝐴ℓ where 𝐴ℓ = [𝑁ℓ−1
𝑁ℓ−1]  

and the special case 𝐴0 = [𝑚]. 

For the rest of the talk, we’ll use w = z−1 interchangeably. Thus, 𝐴−1 =
𝑛1 × 𝑛2 × ⋯ × [𝑛𝐿−1]

After fixing ෥𝑧0, ෥𝑧1, … , ෥𝑧ℓ reason that 𝑖ℓ dependent only on (𝑤1, 𝑤2, … , 𝑤𝑙−1) 
and independent of 𝑤𝑙. This is the        for induction!
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Multiparty Communication
Suppose there is some function 𝑓: 𝑋1 × 𝑋2 × ⋯ × 𝑋𝑛 → 𝑌, and player 𝑖 receives 𝑥𝑖 ∈ 𝑋𝑖 
How much information (bits) do they have to share in order to compute 𝑓?



Multiparty Communication
Suppose there is some function 𝑓: 𝑋1 × 𝑋2 × ⋯ × 𝑋𝑛 → 𝑌, and player 𝑖 receives 𝑥𝑖 ∈ 𝑋𝑖 
How much information (bits) do they have to share in order to compute 𝑓?

…

In the “blackboard” model, each round 𝑟 = 1, 2, … 𝑟, player 𝑖 = 1, 2, … 𝑛 writes Π𝑟,𝑖 visible to everyone
The transcript is given by the contents of the blackboard at termination!

Many “memory” lower bounds follow from a reduction to this game, where one argues that a transcript 
of small size can’t compute 𝑓 too well…

𝑀1
𝑟 𝑀2

𝑟 𝑀𝑛−1
𝑟

𝑀𝑛
𝑟

𝑀𝑟−1
𝑀𝑟−1 ∪ 𝑀1

𝑟
𝑀𝑟−1 ∪ ⋃𝑀𝑖

𝑟
𝑀𝑟−1 ∪ ⋃𝑀𝑖

𝑟

Output: f(𝑀𝑅) 



Autoregressive Game
To prove the sharper lower bounds, one should reduce to the weakest possible communication game

Input: 𝐿 + 2 players, 𝑖 ∈ −1: 𝐿  each receiving 𝑧𝑖 in 𝑚𝑖 “tokens” 

Game: At epoch ℓ = 0, nothing has happened. For epoch ℓ ∈ 1: 𝐿  and for player 𝑖 ∈ [−1: 𝐿], execute the 
game rooted at player 𝑖 

𝑋𝐿 𝑋𝐿−1 𝑋𝐿−2 … 𝑋𝑖

1. player 𝑖 sends its information to all players 𝑗 ∈ [𝑖 + 1: 𝐿] 
2. player 𝑗 sends Π𝑗,𝑖

ℓ  of size at most 2𝐵 ⋅ 𝑚𝑖 back, depending on 𝑋𝑗
ℓ and 𝑋𝑖

ℓ

𝑋𝐿
ℓ 𝑋𝐿−1

ℓ 𝑋𝐿−2
ℓ … 𝑋𝑖

ℓ

𝑋𝐿 𝑋𝐿−1 𝑋𝐿−2 … 𝑋0 𝑋−1



Autoregressive Game
To prove the sharper lower bounds, one should reduce to the weakest possible communication game

Input: 𝐿 + 2 players, 𝑖 ∈ −1: 𝐿  each receiving 𝑧𝑖 in 𝑚𝑖 “tokens”, message bits 𝐵 

Game: At epoch ℓ = 0, nothing has happened. For epoch ℓ ∈ 1: 𝐿  and for player 𝑖 ∈ [−1: 𝐿], execute the 
game rooted at player 𝑖 

𝑋𝐿 𝑋𝐿−1 𝑋𝐿−2 … 𝑋𝑖

1. player 𝑖 sends its information to all players 𝑗 ∈ [𝑖 + 1: 𝐿] 
2. player 𝑗 sends Π𝑗,𝑖

ℓ  of size at most 2𝐵 ⋅ 𝑚𝑖 back, depending on 𝑋𝑗
ℓ and 𝑋𝑖

ℓ 
3. player 𝑖 accumulates responses: 𝑋𝑖

ℓ+1 = 𝑋𝑖
ℓ ∪ ⋃𝑗>𝑖 Π𝑗,𝑖

ℓ

𝑋𝐿 𝑋𝐿−1 𝑋𝐿−2 … 𝑋𝑖

update!!

𝑋𝐿 𝑋𝐿−1 𝑋𝐿−2 … 𝑋0 𝑋−1

At the end of 𝐿 epochs, player −1 computes a function on its information, and outputs a response!  



Takeaways
Important to remember that player 𝑗 does not “remember” its responses to i < 𝑗 
⇒ the game rooted at 𝑗 is oblivious to the game rooted at 𝑖, 
⇒ think about the games executing “in parallel” (familiar?)

The player at the end of the line has the “strongest” communication power (familiar?), so it’s necessary to 
limit its input size 

To avoid “short-circuit,” however, the first input should be important for the task. 
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Main Lemma

In fact, we can go further: any transformer Γ = 𝐾ℓ,ℎ, 𝑄ℓ,ℎ, 𝑉ℓ,ℎ
ℓ∈ 𝐿 ,ℎ∈ 𝐻

 can be simulated in 𝐿 epochs 

by an autoregressive communication protocol



Main Lemma’s Main Claim

sketch

𝑋𝐿 𝑋𝐿−2 … 𝑋𝑖𝑋𝐿 𝑋𝑗 … 𝑋𝑖

Let 𝐸𝑗 be the set of tokens making up input 𝑋𝑗. Clearly, at ℓ = 0, the claim holds. We show by 
induction if it will hold at ℓ + 1. Consider the game rooted at 𝑋𝑖

…

Using the first set from Π𝑗,𝑖
ℓ  we can compute external values and the second set to collect external 

key-query products.

Putting it together with local computation, (using internal values, key-query products, and 𝑔ℓ), the 
update to 𝑋𝑖

ℓ contains enough information to compute 𝑋𝑖
ℓ+1. This completes the induction. 



Sequential Function Protocol

𝑧𝐿 𝑧𝐿−1 𝑧𝐿−2 … 𝑧0 𝑧−1

Suppose that the following input is given (read from left-to-right) to a transformer, who 
computes sequential function composition: 

where 𝑧𝑖 is defined using 𝑁𝑖 tokens (one for each input) whenever 𝑖 ≥ 1, and 𝑧0, 𝑧−1 are defined in 1 token each. 

By the previous claim, a transformer on this token sequence “solving” the sequential function problem can 
be turned into a communication protocol
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Remaining Work

Lemma (Reduction): If there is an 𝐿 layer decoder only transformer solving sequential composition, then there 
is a deterministic autoregressive communication protocol using at most 𝐿 epochs and 𝐵 = 𝐻𝑑𝑝 message bits. 

Lemma (Lower Bound): There is no autoregressive communication protocol solving sequential composition 
with 𝐿 epochs and 𝐵 = 𝐻𝑑𝑝 message bits.  

Main Thm follows after examining parameters (not in this talk!) 



Communication Rectangles
Rectangles are a tool for combinatorial analysis of communication protocols

Often, when players are restricted to a subset of their input, the protocol has some 
shared behavior across all inputs in this subset

Note: Rectangles are not arbitrary subsets of 𝐴1 × 𝐴2 × 𝐴3, but have to follow the 
”product” nature which gives them this name!

𝐴1

𝐴2

𝐴3
𝑋3

𝑋1

𝑋2

𝑋1 ⊂ 𝐴1, 𝑋2 ⊂ 𝐴2, 𝑋3 ⊂ 𝐴3

Players [ℓ, 𝐿] Players [−1, ℓ − 1]

𝑍<ℓ = 𝐴−1 × 𝑍0 × ⋯ × 𝑍ℓ−1𝑅≥ℓ = 𝑍ℓ × 𝑍ℓ+1 × ⋯ × 𝑍𝐿

A pair of rectangles (𝑍<ℓ, 𝑅≥ℓ) is called indistinguishable if, fixing any ෪𝑍<ℓ ∈ 𝑍<ℓ, 
each ෪𝑅≥ℓ ∈ 𝑅≥ℓ produces the same transcript after ℓ epochs (round of 
communication)



Formalisms



Transcript
It’s worth formalizing a little further what we mean by “transcript” Λℓ on (𝑍<ℓ, 𝑅≥ℓ). 

Players [ℓ, 𝐿] Players [−1, ℓ − 1]

𝑍<ℓ = 𝐴−1 × 𝑍0 × ⋯ × 𝑍ℓ−1𝑅≥ℓ = 𝑍ℓ × 𝑍ℓ+1 × ⋯ × 𝑍𝐿

all messages crossing in each epoch ℓ′ ∈ [ℓ]

In other words, Λℓ is indexed by ෪𝑍<ℓ ∈ 𝑍<ℓ, ෪𝑅≥ℓ ∈ 𝑅≥ℓ, ℓ′ ∈ ℓ , 𝑗 ∈ ℓ, 𝐿 , 𝑖 ∈ [−1, ℓ − 1 ] 

Key: If the decomposition is indistinguishable, what gets “sent back” is independent of ේ𝑅≥ℓ, thus 
we can index Λℓ without it!



Formalism
The information from the previous slide is densely stuffed into formalisms here…

Here, we are “indexing” Λℓ without 𝑅≥ℓ on all epochs ℓ′ ∈ ℓ

should this be range lol?



Contradiction
Player 𝐿 Players [−1, 𝐿 − 1]

Suppose a successful protocol admits indistinguishable (𝑅≥𝐿, 𝑍<𝐿)

Then, for all ෥𝑧𝐿 ∈ 𝑅≥𝐿, the output ෥𝑧𝐿 (𝑤𝐿−1, 𝑖𝐿−1) should be the same!

Clearly, there are 𝑛𝐿−1 possibilities for 𝑤𝐿−1 (recall 𝑍−1 = 𝐴−1). 

Thus, ෥𝑧𝐿 is a function from [𝑁𝐿−1] → 𝑁𝐿−1  fixed on 𝑛𝐿−1|ℐ𝐿−1| input 
values, so we have the following bound:

𝑅≥𝐿
𝑍<𝐿

why can we get away with multiplying? 

Sufficient for contradiction: There exists (𝑅≥𝐿, 𝑍<𝐿) such that both |𝑅≥𝐿| and |ℐ𝐿−1| large! 



Formalisms
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Remaining Objective
It suffices to show that there exists a large indistinguishable separation for the final player. 

This is shown inductively at each level ℓ ∈ [2 ∶ 𝐿 − 1]

Base Case: For ℓ = 2, one can construct (𝑍<2, 𝑅≥2) such that messages to players −1, 0, 1 are the 
same for all ෪𝑅≥2 ∈ 𝑅≥2 in the first 2 epochs. [The transcripts are determined entirely through ෪𝑍<2 ∈
𝑍<2]

Inductive Hypothesis: Suppose one can find (𝑍<ℓ, 𝑅≥ℓ) such that messages to players [−1, ℓ − 1] 
are the same for all ෪𝑅≥ℓ ∈ 𝑅≥ℓ through each epoch ℓ′ ∈ [ℓ]. 

Inductive Step: There exists (𝑍<ℓ+1, 𝑅≥ℓ+1) such that messages to players [−1, ℓ] are the same for 
all ෫𝑅≥ℓ+1 ∈ 𝑅≥ℓ+1 through each epoch ℓ′ ∈ [ℓ + 1]. 

Each of these decomposition must be “large enough” so that we fail at L!
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Base Case
The first order of business it to select 𝑍<2 = 𝑍−1 × 𝑍0 × 𝑍1

 𝑍−1 is fixed (why?) and since |𝑍0| ⊂ [𝑚] has size 𝑥0, we can take 𝑍0 = [𝑥0] without loss of generality (why?) 

So, we only have to select 𝑍1 ⊆ 𝐴1. Consider the set of first epoch messages from player 1 to -1: 

Each z ∈ 𝐴1 realizes a particular tuple above. There are 22𝐻𝑑𝑝 𝑍−1 = 22𝐻𝑑𝑝𝑛1⋯𝑛𝐿−1  total possible tuples, so 
there is some 𝑆 ⊆ 𝐴1 that produces the same tuple (possible transcripts) of size at least A1 2−2𝐻𝑑𝑝𝑛1⋯𝑛𝐿−1 .

The upshot is as follows: 



Fixing Transcripts: Player -1
Now that we’ve ”determined” 𝑍<2, it remains to select 𝑅≥2, which we do by “fixing transcripts” (i.e., 
repeatedly applying the consistency property). We start with the first player on the first epoch. 



Fixing Transcripts: Player -1
Now that we’ve ”determined” 𝑍<2, it remains to select 𝑅≥2, which we do by “fixing transcripts” (i.e., 
repeatedly applying the consistency property). We start with the first player on the first epoch. 



Fixing Transcripts: Player -1
We continue examining player 1, but on the second epoch. The way we selected 𝑍1 ⊂ 𝑆 becomes 
essential in this part!



Fixing Transcripts: Player -1
We continue examining player 1, but on the second epoch. The way we selected 𝑍1 ⊂ 𝑆 becomes 
essential in this part!



Fixing Transcripts: Players 0, 1
We are more crude with players 0 and 1 (why can we afford this?)



Inductive Step
We have a decomposition 𝑍<ℓ, 𝑅≥ℓ  which is indistinguishable through ℓ epochs, we’d like to distill 
𝑍<ℓ+1, 𝑅≥ℓ+1  which holds through  ℓ + 1 epochs

Players [ℓ, 𝐿] Players [−1, ℓ − 1]

𝑍<ℓ = 𝐴−1 × 𝑍0 × ⋯ × 𝑍ℓ−1𝑅≥ℓ = 𝑍ℓ × 𝑍ℓ+1 × ⋯ × 𝑍𝐿

Players [ℓ + 1, 𝐿] ℓ Players [−1, ℓ − 1]

𝑍<ℓ = 𝐴−1 ×? × ⋯ ×??𝑅≥ℓ+1 =?×?× ⋯ ×?

Is there an easy way to fill in the ? above?

holds for ℓ′ ∈ [ℓ + 1]

holds for ℓ′ ∈ [ℓ]



Inductive Step
We have a decomposition 𝑍<ℓ, 𝑅≥ℓ  which is indistinguishable through ℓ epochs, we’d like to distill 
𝑍<ℓ+1, 𝑅≥ℓ+1  which holds through  ℓ + 1 epochs

Players [ℓ, 𝐿] Players [−1, ℓ − 1]

𝑍<ℓ = 𝐴−1 × 𝑍0 × ⋯ × 𝑍ℓ−1𝑅≥ℓ = 𝑍ℓ × 𝑍ℓ+1 × ⋯ × 𝑍𝐿

Players [ℓ + 1, 𝐿] ℓ Players [−1, ℓ − 1]

𝑍<ℓ = 𝐴−1 ×? × ⋯ ×??𝑅≥ℓ+1 =?×?× ⋯ ×?

Is there an easy way to fill in the ? above? No , too many moving parts!

holds for ℓ′ ∈ [ℓ + 1]

holds for ℓ′ ∈ [ℓ]



Inductive Step
We have a decomposition 𝑍<ℓ, 𝑅≥ℓ  which is indistinguishable through ℓ epochs, we’d like to distill 
𝑍<ℓ+1, 𝑅≥ℓ+1  which holds through  ℓ + 1 epochs

Players [ℓ, 𝐿] Players [−1, ℓ − 1]

𝑍<ℓ = 𝐴−1 × 𝑍0 × ⋯ × 𝑍ℓ−1𝑅≥ℓ = 𝑍ℓ × 𝑍ℓ+1 × ⋯ × 𝑍𝐿

Players [ℓ + 1, 𝐿] ℓ Players [−1, ℓ − 1]

𝑍<ℓ = 𝐴−1 ×? × ⋯ ×??𝑅≥ℓ+1 =?×?× ⋯ ×?

holds for ℓ′ ∈ [ℓ + 1]

holds for ℓ′ ∈ [ℓ]

Order of attack: 
 1. Determine the new 𝑍ℓ and a superset of the new 𝑅≥ℓ (yet subset of old)
 2. “Fix the transcripts” between [ℓ + 1, 𝐿] and [−1, ℓ − 1] on just the first ℓ epochs
 3. “Fix the transcripts” between [ℓ + 1, 𝐿] and [−1, ℓ − 1] on the ℓ + 1 epoch
 4. “Fix the transcript” for player ℓ over all ℓ + 1 epochs



Inductive Step
We have a decomposition 𝑍<ℓ, 𝑅≥ℓ  which is indistinguishable through ℓ epochs, we’d like to distill 
𝑍<ℓ+1, 𝑅≥ℓ+1  which holds through  ℓ + 1 epochs

Players [ℓ, 𝐿] Players [−1, ℓ − 1]

𝑍<ℓ = 𝐴−1 × 𝑍0 × ⋯ × 𝑍ℓ−1𝑅≥ℓ = 𝑍ℓ × 𝑍ℓ+1 × ⋯ × 𝑍𝐿

Players [ℓ + 1, 𝐿] ℓ Players [−1, ℓ − 1]

𝑍<ℓ = 𝐴−1 ×? × ⋯ ×??𝑅≥ℓ+1 =?×?× ⋯ ×?

holds for ℓ′ ∈ [ℓ + 1]

holds for ℓ′ ∈ [ℓ]

Order of attack: 
 1. Determine the new 𝒁ℓ and a superset of the new 𝑹≥ℓ (yet subset of old)
 2. “Fix the transcripts” between [ℓ + 1, 𝐿] and [−1, ℓ − 1] on just the first ℓ epochs
 3. “Fix the transcripts” between [ℓ + 1, 𝐿] and [−1, ℓ − 1] on the ℓ + 1 epoch
 4. “Fix the transcript” for player ℓ over all ℓ + 1 epochs



Building the new 𝑍<ℓ+1 
The following technical lemma essentially one-shots picking 𝑍<ℓ 

We get all the properties we dreamed about 𝑍<ℓ+1 = 𝑍ℓ × 𝑍<ℓ, besides consistency  

As with the base case, we’ll whittle down 𝑆1
ℓ in the following steps until we get an indistinguishable rectangle. 



Inductive Step
We have a decomposition 𝑍<ℓ, 𝑅≥ℓ  which is indistinguishable through ℓ epochs, we’d like to distill 
𝑍<ℓ+1, 𝑅≥ℓ+1  which holds through  ℓ + 1 epochs

Players [ℓ, 𝐿] Players [−1, ℓ − 1]

𝑍<ℓ = 𝐴−1 × 𝑍0 × ⋯ × 𝑍ℓ−1𝑅≥ℓ = 𝑍ℓ × 𝑍ℓ+1 × ⋯ × 𝑍𝐿

Players [ℓ + 1, 𝐿] ℓ Players [−1, ℓ − 1]

𝑍<ℓ = 𝐴−1 ×? × ⋯ ×??𝑅≥ℓ+1 =?×?× ⋯ ×?

holds for ℓ′ ∈ [ℓ + 1]

holds for ℓ′ ∈ [ℓ]

Order of attack: 
 1. Determine the new 𝑍ℓ and a superset of the new 𝑅≥ℓ (yet subset of old)
 2. “Fix the transcripts” between [ℓ + 𝟏, 𝑳] and [−𝟏, ℓ − 𝟏] on just the first ℓ epochs
 3. “Fix the transcripts” between [ℓ + 1, 𝐿] and [−1, ℓ − 1] on the ℓ + 1 epoch
 4. “Fix the transcript” for player ℓ over all ℓ + 1 epochs



”Fixing the transcript” I
Recall we have constructed a decomposition (Z<ℓ+1, S1) which is not necessarily indistinguishable.

In this step, we consider the transcripts only between players [ℓ + 1, 𝐿] and [−1, ℓ − 1] in just the 
first ℓ epochs…

Question: Does (Z<ℓ+1, S1) behave indistinguishably? If so, what transcript does it adopt?



”Fixing the transcript” I
Recall we have constructed a decomposition (Z<ℓ+1, S1) which is not necessarily indistinguishable.

In this step, we consider the transcripts only between players [ℓ + 1, 𝐿] and [−1, ℓ − 1] in just the 
first ℓ epochs…

Question: Does (Z<ℓ+1, S1) behave indistinguishably? If so, what transcript does it adopt?

Answer: Yes!! Note that S1 ⊂ 𝑅≥ℓ and we consider assignments in Z<ℓ up to ℓ epochs … sub-
rectangles of indistinguishable rectangles remain indistinguishable! We adopt the transcript of the 
inductive hypothesis. 



”Fixing the transcript” I



Inductive Step
We have a decomposition 𝑍<ℓ, 𝑅≥ℓ  which is indistinguishable through ℓ epochs, we’d like to distill 
𝑍<ℓ+1, 𝑅≥ℓ+1  which holds through  ℓ + 1 epochs

Players [ℓ, 𝐿] Players [−1, ℓ − 1]

𝑍<ℓ = 𝐴−1 × 𝑍0 × ⋯ × 𝑍ℓ−1𝑅≥ℓ = 𝑍ℓ × 𝑍ℓ+1 × ⋯ × 𝑍𝐿

Players [ℓ + 1, 𝐿] ℓ Players [−1, ℓ − 1]

𝑍<ℓ = 𝐴−1 ×? × ⋯ ×??𝑅≥ℓ+1 =?×?× ⋯ ×?

holds for ℓ′ ∈ [ℓ + 1]

holds for ℓ′ ∈ [ℓ]

Order of attack: 
 1. Determine the new 𝑍ℓ and a superset of the new 𝑅≥ℓ (yet subset of old)
 2. “Fix the transcripts” between [ℓ + 1, 𝐿] and [−1, ℓ − 1] on just the first ℓ epochs
 3. “Fix the transcripts” between [ℓ + 𝟏, 𝑳] and [−𝟏, ℓ − 𝟏] on the ℓ + 𝟏 epoch
 4. “Fix the transcript” for player ℓ over all ℓ + 1 epochs



“Fixing the transcript” II
The first nontrivial step, where we finally see a distillation of S≥ℓ+1! 

In this step, we consider the transcripts only between players [ℓ + 1, 𝐿] and [−1, ℓ − 1] on the ℓ + 1 epoch 

Observation: Using the previous “fixing the transcript,” players [−1, ℓ − 1] receive the same transcript on 
all ℓ′ ∈ ℓ  of which 𝑧ℓ ∈ 𝑍ℓ  we select

Conclusion: The message sent at the ℓ + 1 epoch is independent of 𝑍ℓ!



“Fixing the transcript” II
The first nontrivial step, where we finally see a distillation of S≥ℓ+1! 

In this step, we consider the transcripts only between players [ℓ + 1, 𝐿] and [−1, ℓ − 1] on the ℓ + 1 epoch 

Observation: Using the previous “fixing the transcript,” players [−1, ℓ − 1] receive the same transcript on 
all ℓ′ ∈ ℓ  of which 𝑧ℓ ∈ 𝑍ℓ  we select

Conclusion: The message sent at the ℓ + 1 epoch is independent of 𝑍ℓ!

Therefore, we can write the transcript tuple without indexing 𝑧ℓ 



“Fixing the transcript” II
With some more thought, the following lemma follows from observation

By counting transcripts Φℓ+1 and again using pigeonhole, we find: 

We set 𝑇≥ℓ+1 = 𝑆 ෩Φℓ+1 ⊂ 𝑆≥ℓ+1 to be our first refinement!!



Inductive Step
We have a decomposition 𝑍<ℓ, 𝑅≥ℓ  which is indistinguishable through ℓ epochs, we’d like to distill 
𝑍<ℓ+1, 𝑅≥ℓ+1  which holds through  ℓ + 1 epochs

Players [ℓ, 𝐿] Players [−1, ℓ − 1]

𝑍<ℓ = 𝐴−1 × 𝑍0 × ⋯ × 𝑍ℓ−1𝑅≥ℓ = 𝑍ℓ × 𝑍ℓ+1 × ⋯ × 𝑍𝐿

Players [ℓ + 1, 𝐿] ℓ Players [−1, ℓ − 1]

𝑍<ℓ = 𝐴−1 ×? × ⋯ ×??𝑅≥ℓ+1 =?×?× ⋯ ×?

holds for ℓ′ ∈ [ℓ + 1]

holds for ℓ′ ∈ [ℓ]

Order of attack: 
 1. Determine the new 𝑍ℓ and a superset of the new 𝑅≥ℓ (yet subset of old)
 2. “Fix the transcripts” between [ℓ + 1, 𝐿] and [−1, ℓ − 1] on just the first ℓ epochs
 3. “Fix the transcripts” between [ℓ + 1, 𝐿] and [−1, ℓ − 1] on the ℓ + 1 epoch
 4. “Fix the transcript” for player ℓ over all ℓ + 𝟏 epochs



“Fixing the transcript” III
The final step is to “fix the transcript” sent to player ℓ by players ℓ + 1, 𝐿  in all ℓ + 1 epochs. 

Doing this will complete the induction, so the distillation of 𝑇≥ℓ+1 we retrieve will be the output 𝑅≥ℓ+1!

Thus, we set 𝑅≥ℓ+1 = 𝑇(෩Ψ) and note that it satisfies all the desired properties. The induction is complete! 



Thanks for listening!! ☺ 

Via X/Twitter
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