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Standard Models of Learning

Offline (PAC) learning
* Adversary picks a worst-case distribution P and learner receives i.i.d. samples
* Constrained to a function class F, the learner outputs predictor f € F

* The learner’s performance graded against best f* € F on a fresh sample from P

(&

Online Learning

* Adversary picks a worst case (x;, y; ) while player picks h;: X = Y simultaneously

« Playerincurs loss £(y;, h(x;))

 Game continues forrounds t € [T] and performance graded on regret, the best fixed
\ action f* € F in hindsight




Standard Models of Learning

Characterized by VC Dimension of F, originates from empirical process theory

Online Learning

* Adversary picks a worst case (x¢, V¢
 Playerincurs loss £(y;, he(x:))

* Game continues for rounds t € [T] and performance graded on reg
hindsight

Characterized by Littlestone Dimension of F, generalizes VC analysis using martingales
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Smoothed Online Learning

...i1s the story over?
* How can we expand the toolkit from offline and online algorithms to smoothened setting?
* |sthe ”bounded derivative” setting the appropriate interpretation of smoothening for learning problems?




Theoretical Thinking

* Relaxing bounded likelihood ratio restriction to more general adversary distributions U.

Initially needed for a coupling step in the proof that uses rejection sampling
A first step made by [BP’23] relaxes the ratio to general closenessin f-divergence, and shows rejection sampling

technique continues to apply
* Isrejection sampling really the correct way to think about this?
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* Efficient Algorithms
For binary classification, ERM is the staple yet notably fails for online learning [HK16]. How should we learn in

smoothened online learning, given that ERM works again [BRS24]
* Aclever Hedge-based technique of [Bla24] further improves rates but is utterly inefficient (constructing coverings)
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* Efficient Algorithms
For binary classification, ERM is the staple yet notably fails for online learning [HK16]. How should we learn in

smoothened online learning, given that ERM works again [BRS24]
* Aclever Hedge-based technique of [Bla24] further improves rates but is utterly inefficient (constructing coverings)

* Auniversal learning characterization?
* Doesthere exist a characterization that generalizes both VC and Littlestone dimension?

« Afirst step made by [BK25] by studying the pair (F,U) on an “interaction tree,” which recovers near-optimal rates in
both offline and prior smoothed online learning.
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