

Smoothed Analysis in Learning

By: Anish Jayant

Standard Models of Learning

Offline (PAC) learning

- Adversary picks a worst-case distribution P and learner receives *i.i.d.* samples
- Constrained to a function class F , the learner outputs predictor $f \in F$
- The learner's performance graded against best $f^* \in F$ on a fresh sample from P

Online Learning

- Adversary picks a worst case (x_t, y_t) while player picks $h_t: X \rightarrow Y$ simultaneously
- Player incurs loss $\ell(y_t, h_t(x_t))$
- Game continues for rounds $t \in [T]$ and performance graded on *regret*, the best fixed action $f^* \in F$ in hindsight

Standard Models of Learning

Offline (PAC) learning

- Adversary picks a worst-case distribution $P \in \mathcal{P}$ and learner receives *i.i.d.* samples
- Constrained to a function class \mathcal{F} , the learner outputs predictor $f \in \mathcal{F}$
- The learner's performance graded against best $f^* \in \mathcal{F}$ on a fresh sample from P

Characterized by **VC Dimension** of \mathcal{F} , originates from *empirical process theory*

Online Learning

- Adversary picks a worst case (x_t, y_t) while player picks $h_t: X \rightarrow Y$ simultaneously
- Player incurs loss $\ell(y_t, h_t(x_t))$
- Game continues for rounds $t \in [T]$ and performance graded on *regret*, the best fixed action $f^* \in F$ in hindsight

Characterized by **Littlestone Dimension** of F , generalizes VC analysis using martingales

Smoothed Online Learning

Question [RST'11]: If the adversary's suggests distributions instead of points (i.e., noise perturbation, semi-random behavior), can we recover learnability? (in the VC theory sense)

Smoothed Online Learning

Question [RST'11]: If the adversary's suggests distributions instead of points (i.e., noise perturbation, semi-random behavior), can we recover learnability?

Smoothed Online Learning: At each $t \in [T]$ adversary may suggest $p_t \in \Delta(\mathcal{X})$ as long as $\frac{dp_t(x)}{d\mu(x)} \leq \sigma^{-1}$, for $\sigma \in [0, 1]$.

Smoothed Online Learning

Question [RST'11]: If the adversary's suggests distributions instead of points (i.e., noise perturbation, semi-random behavior), can we recover learnability?

Smoothed Online Learning: At each $t \in [T]$ adversary may suggest $p_t \in \Delta(\mathcal{X})$ as long as $\frac{dp_t(x)}{d\mu(x)} \leq \sigma^{-1}$, for $\sigma \in [0, 1]$.

“Answer” [e.g. Haghtalab'18]: If the adversary suggests all distributions *in advance* then VC dimension characterizes learnability. \sim (Learning without *i.i.d* assumption)

Smoothed Online Learning

Question [RST'11]: If the adversary's suggests distributions instead of points (i.e., noise perturbation, semi-random behavior), can we recover learnability?

Smoothed Online Learning: At each $t \in [T]$ adversary may suggest $p_t \in \Delta(\mathcal{X})$ as long as $\frac{dp_t(x)}{d\mu(x)} \leq \sigma^{-1}$, for $\sigma \in [0, 1]$.

“Answer” [e.g. Haghtalab’18]: If the adversary suggests all distributions *in advance* then VC dimension characterizes learnability. \sim (Learning without *i.i.d* assumption)

“Answer” [e.g. HRS’24]: Even if the adversary suggests distributions adaptively, then VC dimension again characterizes learnability \sim (Reduces to oblivious setting by coupling arguments)

Smoothed Online Learning

Question [RST'11]: If the adversary's suggests distributions instead of points (i.e., noise perturbation, semi-random behavior), can we recover learnability?

Smoothed Online Learning: At each $t \in [T]$ adversary may suggest $p_t \in \Delta(\mathcal{X})$ as long as $\frac{dp_t(x)}{d\mu(x)} \leq \sigma^{-1}$, for $\sigma \in [0, 1]$.

“Answer” [e.g. Haghtalab’18]: If the adversary suggests all distributions *in advance* then VC dimension characterizes learnability. ~ (Learning without *i.i.d* assumption)

“Answer” [e.g. HRS’24]: Even if the adversary suggests distributions adaptively, then VC dimension again characterizes learnability ~ (Reduces to oblivious setting by coupling arguments)

“Answer” [e.g. BRS’24]: Learning is possible in smoothed online setting *without* knowledge of base measure through ERM – which fails in traditional online! ~ (natural exploration/exploitation, sharpened by [Bla’24])

Smoothed Online Learning

Question [RST'11]: If the adversary's suggests distributions instead of points (i.e., noise perturbation, semi-random behavior), can we recover learnability?

Smoothed Online Learning: At each $t \in [T]$ adversary may suggest $p_t \in \Delta(\mathcal{X})$ as long as $\frac{dp_t(x)}{d\mu(x)} \leq \sigma^{-1}$, for $\sigma \in [0, 1]$.

“Answer” [e.g. Haghtalab’18]: If the adversary suggests all distributions *in advance* then VC dimension characterizes learnability. ~ (Learning without *i.i.d* assumption)

“Answer” [e.g. HRS’24]: Even if the adversary suggests distributions adaptively, then VC dimension again characterizes learnability ~ (Reduces to oblivious setting by coupling arguments)

“Answer” [e.g. BRS’24]: Learning is possible in smoothed online setting *without* knowledge of base measure through ERM – which fails in traditional online! ~ (natural exploration/exploitation, sharpened by [Bla’24])

...is the story over?

- How can we expand the toolkit from offline and online algorithms to smoothed setting?
- Is the “bounded derivative” setting the appropriate interpretation of smoothing for learning problems?

Theoretical Thinking

- Relaxing bounded likelihood ratio restriction to more general adversary distributions \mathcal{U} .
 - Initially needed for a coupling step in the proof that uses *rejection sampling*
 - A first step made by [BP'23] relaxes the ratio to general closeness in f -divergence, and shows rejection sampling technique continues to apply
 - Is rejection sampling *really* the correct way to think about this?

Theoretical Thinking

- Relaxing bounded likelihood ratio restriction to more general adversary distributions \mathcal{U} .
 - Initially needed for a coupling step in the proof that uses *rejection sampling*
 - A first step made by [BP'23] relaxes the ratio to general closeness in f -divergence, and shows rejection sampling technique continues to apply
 - Is rejection sampling *really* the correct way to think about this?
- Efficient Algorithms
 - For binary classification, ERM is the staple yet notably fails for online learning [HK16]. How should we learn in smoothed online learning, given that ERM works again [BRS24]
 - A clever Hedge-based technique of [Bla24] further improves rates but is utterly inefficient (constructing coverings)

Theoretical Thinking

- Relaxing bounded likelihood ratio restriction to more general adversary distributions \mathcal{U} .
 - Initially needed for a coupling step in the proof that uses *rejection sampling*
 - A first step made by [BP'23] relaxes the ratio to general closeness in f -divergence, and shows rejection sampling technique continues to apply
 - Is rejection sampling *really* the correct way to think about this?
- Efficient Algorithms
 - For binary classification, ERM is the staple yet notably fails for online learning [HK16]. How should we learn in smoothed online learning, given that ERM works again [BRS24]
 - A clever Hedge-based technique of [Bla24] further improves rates but is utterly inefficient (constructing coverings)
- A *universal* learning characterization?
 - Does there exist a characterization that generalizes both VC and Littlestone dimension?
 - A first step made by [BK25] by studying the pair $(\mathcal{F}, \mathcal{U})$ on an “interaction tree,” which recovers near-optimal rates in *both* offline and prior smoothed online learning.