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Standard Models of Learning

Offline (PAC) learning 

• Adversary picks a worst-case distribution 𝑃 and learner receives i.i.d. samples 

• Constrained to a function class 𝐹, the learner outputs predictor 𝑓 ∈ 𝐹

• The learner’s performance graded against best 𝑓∗ ∈ 𝐹 on a fresh sample from 𝑃

Online Learning
• Adversary picks a worst case (𝑥𝑡 , 𝑦𝑡) while player picks ℎ𝑡: 𝑋 → 𝑌 simultaneously
• Player incurs loss ℓ 𝑦𝑡 , ℎ𝑡 𝑥𝑡
• Game continues for rounds 𝑡 ∈ [𝑇] and performance graded on regret, the best fixed 

action 𝑓∗ ∈ 𝐹 in hindsight



Standard Models of Learning

Offline (PAC) learning 
• Adversary picks a worst-case distribution P ∈ 𝒫 and learner receives i.i.d. samples 
• Constrained to a function class ℱ, the learner outputs predictor 𝑓 ∈ ℱ
• The learner’s performance graded against best 𝑓∗ ∈ ℱ on a fresh sample from 𝑃

Characterized by VC Dimension of ℱ, originates from empirical process theory

Online Learning

• Adversary picks a worst case (𝑥𝑡, 𝑦𝑡) while player picks ℎ𝑡: 𝑋 → 𝑌 simultaneously

• Player incurs loss ℓ(𝑦𝑡, ℎ𝑡 𝑥𝑡 )

• Game continues for rounds 𝑡 ∈ [𝑇] and performance graded on regret, the best fixed action 𝑓∗ ∈ 𝐹 in 
hindsight

Characterized by Littlestone Dimension of 𝐹, generalizes VC analysis using martingales



Smoothed Online Learning
Question [RST’11]: If the adversary’s suggests distributions instead of points (i.e., noise 
perturbation, semi-random behavior), can we recover learnability? (in the VC theory sense)



Smoothed Online Learning
Question [RST’11]: If the adversary’s suggests distributions instead of points (i.e., noise 
perturbation, semi-random behavior), can we recover learnability?

Smoothed Online Learning: At each 𝑡 ∈ [𝑇] adversary may suggest 𝑝𝑡 ∈ Δ(𝒳) as long as 𝑑𝑝𝑡(𝑥)
𝑑𝜇(𝑥)

≤ 𝜎−1, for 𝜎 ∈ 0, 1 . 



Smoothed Online Learning
Question [RST’11]: If the adversary’s suggests distributions instead of points (i.e., noise 
perturbation, semi-random behavior), can we recover learnability?

Smoothed Online Learning: At each 𝑡 ∈ [𝑇] adversary may suggest 𝑝𝑡 ∈ Δ(𝒳) as long as 𝑑𝑝𝑡(𝑥)
𝑑𝜇(𝑥)

≤ 𝜎−1, for 𝜎 ∈ 0, 1 . 

“Answer” [e.g. Haghtalab’18]: If the adversary suggests all distributions in advance then VC dimension 
characterizes learnability. ~ (Learning without i.i.d assumption)



Smoothed Online Learning
Question [RST’11]: If the adversary’s suggests distributions instead of points (i.e., noise 
perturbation, semi-random behavior), can we recover learnability?

Smoothed Online Learning: At each 𝑡 ∈ [𝑇] adversary may suggest 𝑝𝑡 ∈ Δ(𝒳) as long as 𝑑𝑝𝑡(𝑥)
𝑑𝜇(𝑥)

≤ 𝜎−1, for 𝜎 ∈ 0, 1 . 

“Answer” [e.g. Haghtalab’18]: If the adversary suggests all distributions in advance then VC dimension 
characterizes learnability. ~ (Learning without i.i.d assumption)
“Answer” [e.g. HRS’24]: Even if the adversary suggests distributions adaptively, then VC dimension again 
characterizes learnability ~ (Reduces to oblivious setting by coupling arguments)



Smoothed Online Learning
Question [RST’11]: If the adversary’s suggests distributions instead of points (i.e., noise 
perturbation, semi-random behavior), can we recover learnability?

Smoothed Online Learning: At each 𝑡 ∈ [𝑇] adversary may suggest 𝑝𝑡 ∈ Δ(𝒳) as long as 𝑑𝑝𝑡(𝑥)
𝑑𝜇(𝑥)

≤ 𝜎−1, for 𝜎 ∈ 0, 1 . 

“Answer” [e.g. Haghtalab’18]: If the adversary suggests all distributions in advance then VC dimension 
characterizes learnability. ~ (Learning without i.i.d assumption)
“Answer” [e.g. HRS’24]: Even if the adversary suggests distributions adaptively, then VC dimension again 
characterizes learnability ~ (Reduces to oblivious setting by coupling arguments)
“Answer” [e.g. BRS’24]: Learning is possible in smoothed online setting without knowledge of base measure 
through ERM – which fails in traditional online! ~ (natural exploration/exploitation, sharpened by [Bla’24])



Smoothed Online Learning
Question [RST’11]: If the adversary’s suggests distributions instead of points (i.e., noise 
perturbation, semi-random behavior), can we recover learnability?

Smoothed Online Learning: At each 𝑡 ∈ [𝑇] adversary may suggest 𝑝𝑡 ∈ Δ(𝒳) as long as 𝑑𝑝𝑡(𝑥)
𝑑𝜇(𝑥)

≤ 𝜎−1, for 𝜎 ∈ 0, 1 . 

…is the story over? 
• How can we expand the toolkit from offline and online algorithms to smoothened setting?
• Is the ”bounded derivative” setting the appropriate interpretation of smoothening for learning problems? 

“Answer” [e.g. Haghtalab’18]: If the adversary suggests all distributions in advance then VC dimension 
characterizes learnability. ~ (Learning without i.i.d assumption)
“Answer” [e.g. HRS’24]: Even if the adversary suggests distributions adaptively, then VC dimension again 
characterizes learnability ~ (Reduces to oblivious setting by coupling arguments)
“Answer” [e.g. BRS’24]: Learning is possible in smoothed online setting without knowledge of base measure 
through ERM – which fails in traditional online! ~ (natural exploration/exploitation, sharpened by [Bla’24])



Theoretical Thinking

• Relaxing bounded likelihood ratio restriction to more general adversary distributions 𝒰. 
• Initially needed for a coupling step in the proof that uses rejection sampling 
• A first step made by [BP’23] relaxes the ratio to general closeness in 𝑓-divergence, and shows rejection sampling 

technique continues to apply
• Is rejection sampling really the correct way to think about this?
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• A clever Hedge-based technique of [Bla24] further improves rates but is utterly inefficient (constructing coverings)
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technique continues to apply
• Is rejection sampling really the correct way to think about this?

• Efficient Algorithms
• For binary classification, ERM is the staple yet notably fails for online learning [HK16]. How should we learn in 

smoothened online learning, given that ERM works again [BRS24]
• A clever Hedge-based technique of [Bla24] further improves rates but is utterly inefficient (constructing coverings)

• A universal learning characterization? 
• Does there exist a characterization that generalizes both VC and Littlestone dimension?
• A first step made by [BK25] by studying the pair (ℱ,𝒰) on an “interaction tree,” which recovers near-optimal rates in 

both offline and prior smoothed online learning. 
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