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1 Introduction

Classical perspectives on learning theory focus on arguably extreme data generation models of

either i.i.d. or completely adversarial data. We review each of these settings and then introduce

the smoothed online setting, which interpolates between the two.

Definition 1 (Offline Learning). Let F ⊂
{
YX}

be a function class and let P be distribution over

Z = X × Y . Nature’s ground truth distribution P ∈ P is fixed and a training set S ⊂ Zn
is sampled

independently and identically from P . A learner, represented as a map π : Zn → ∆(D), selects a

decision function ŷ ∈ D at random. If, as n → ∞, the expected loss of π against P tends to the best possible

performance of any predictor in F , we say that F is learnable in the offline setting.

The notion introduced in Def. 1 may be formalized as a game between the player and the

environment as

V iid(F , n) = inf
π

sup
P

(
E [L(ŷ)]− inf

f∈F
L(f)

)
, (1)

where learnability implies limn→∞ V iid(F , n) = 0. In the binary classification case, where Y =
{0, 1} and we are interested in the 0-1 loss, the properties that F must obey to be properly learnable

(i.e., D = F ) are well-studied. The representation Eq. 1 may be bounded by symmetrization to the

Rademacher complexity of F and ultimately controlled in terms of the combinatorial VC dimension,

which is the largest cardinality n such that there exist {x1, x2, ..., xd} ∈ X shattered by F , i.e.,

{f(x1), f(x2), ..., f(xd)|f ∈ F} = {±1}d.

In stark contrast, the online learning setting makes no guarantee about the data generating

process, which may be adversarial.

Definition 2 (Online Learning). Let F ⊂
{
YX}

be a function class and D ⊂
{
YX}

be a decision space.

Over a horizon T , for each t ∈ [T ] Nature selects data zt and the learner decides randomized map πt ∈ D to

simultaneously. Then, the learner suffers loss ℓ(ŷt, zt) and observes zt. If, as T → ∞, the regret against

F ,

Regret(F , T ) =

T∑
i=1

ℓ(ŷt, zt)− inf
f∈F

n∑
t=1

ℓ(f, zt)

is sublinear, then F is learnable in the online setting.

In the former case, VC theory is known to completely classify learnability. A function class The

minimax representation is even more informative in this case, exhibiting the sequential nature

Vseq(F , n) =

〈
inf

qt∈∆(D)
sup
zt∈Z

Eŷt∼qt

〉T

t=1

[
Regret(F , T )

T

]
, (2)
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where we use ⟨ai⟩ni=1 = a1a2 . . . an to compactly represent the n round game. Using a more

wasteful skolemization rather than symmetrization, the quantity Eq. 2 may be characterized by

sequential shattering via Littlestone dimension, which is strictly larger than the VC dimension and

often infinite, even for simple classes.

Definition 3 (Smoothed online learning). For some base measure µ, Nature plays the game described

in Def. 2 but suggests a distribution on Z with marginal over X bounded in Radon-Nikodym derivative

(likelihood) by σ−1
against µ, for σ ∈ (0, 1] ∪ {0}.

If we denote the allowable distributions ∆̃ =
{
p ∈ ∆(Z) : dp

dµ ≤ 1
σ

}
, Def. 3 insists that the

supremum in Eq. 2 operates over ∆̃ instead of point-distributions over Z . In the case where σ = 1,

we recover the offline setting, and when σ = 0, we agree that ∆̃ = ∆(Z) and recover the online

setting (the best possible moves for the second player in the game does not involve randomization).

Under this restriction, can the sequential complexity be controlled once again by VC dimension?

The seminal result of [4] shows that indeed i.i.d. complexity measures robustly describe this

problem, and that adversarial characterizations are brittle.

We remark that philosophically interpreting the notion of smoothed learning is a difficult

question itself: the adaptive smoothed setting has interesting statistical properties but is not unique

in its interpolation between offline and online settings. The notation in this exposition is borrowed

from [5], which initially proposed adding noise to Nature’s choice in 2. Another promising

direction in the recent [2], studies learnability for both the function class F and distribution class

U in tandem. Clearly, a singleton U = {µ0} recovers the offline case and U = ∆(X ) being the set

of all distributions over X recovers the online case. They are able to subsume known learnability

results in traditional smoothed online learning and somewhat generalize both VC and Littlestone

measures, but it is generally harder to characterize rates or design algorithms from this perspective.

We focus on the formalism developed in Def. 3 in the rest of this survey, which has the comparatively

richest algorithmic landscape.

2 Simple Algorithms

2.1 Hedge and Coupling

We present the first simple algorithm and analysis introduced by [4], which was the first to

characterize learnability in the smoothed online setting using VC dimension. The main tool is an

elementary coupling theorem.

Theorem 4 (Coupling). Let D be an adaptive sequence of σ-smooth distributions on X . Then, for each

k > 0, there is a coupling of Π such that

(
X1, Z

(1)
1 , ..., Z

(1)
k , ...., Xt, Z

(t)
1 , ..., Z

(t)
k

)
∼ Π satisfy

1. X1, ..., Xt is distributed according to D.

2. Z
(j)
i is uniformly and independently distributed on X .

3.

{
Z

(j)
i |j ≥ t, i ∈ [k]

}
is uniformly and independently distributed on X conditoined on X1, ..., Xt−1.

4. With probability at least 1− t(1− σ)k ≥ 1− te−kσ
, {X1, ..., Xt} ⊂

{
Z

(j)
i |i ∈ [k], j ∈ [t]

}
.
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Proof For ease of exposition, we focus on |X | < ∞ and the base measure µ as uniform over X .

We construct the coupling by first drawing Z
(i)
1 , ..., Z

(i)
k and constructing a set S(i)

by including

each Z
(i)
s independently with probability σ · dpi

dµ (Z
(i)
s ) ∈ [0, 1]. If S(i)

is non-empty, we select Xi as

a uniformly random element in the set, otherwise, we draw Xi ∼ pi. We construct this sequence

iteratively from i = 1, 2..., t, selecting pi according to earlier realizations compliant with D.

The properties (2) - (4) are readily checked from this construction, where the failure event is

if any of the S(i)
are empty. To confirm that the marginal distribution for each Xi matches pi, we

calculate for any A ⊂ X ,

Pr[Z(i)
s ∈ A|Z(i)

s ∈ S] =
Pr[Z

(i)
s ∈ S,Z

(i)
s ∈ A]

Pr[Z
(i)
s ∈ A]

=

∫
x∈A dµ(x) · σ dpi

dµ (x)∫
x∈X dµ(x) · σ dpi

dµ (x)
= pi(A).

It is apparent that the proof holds even when the base measure is arbitrary µ ∈ ∆(X ), but we focus

on the uniform case in line with [4]. Also, X may be infinite with slight measure-theoretic care in

defining likelihood ratios. ■

The main upshot of such a coupling is transferring from adaptive smooth stochastic processes

to i.i.d. samples from a fixed measure, with respect to any bounded function class G. It follows by

a simple monotonicity argument relying on g ≥ 0,

E
D

[
sup
g∈G

T∑
i=1

g(Xi)

]
≤ T 2(1− σ)

α
σ + E

U

sup
g∈G

∑
i∈[k],j∈[T ]

g
(
Z

(j)
i

) , (3)

where k = α/σ. From here, standard concentration bounds using the VC dimension d of G, control

Lemma 5. For any k and ϵ > 120d log(4e2/ϵ)
Tk

E
U

sup
g∈G

∑
i∈[k],j∈[T ]

g
(
Z

(j)
i

) ≤ 72
√
ϵTkd log(1/ϵ) + Tkϵ. (4)

With just these technical tools, we are ready to present the first simple algorithm!

Theorem 6. Let H be a hypothesis class of VC dimension d. There is an algorithm A such that, for any

adaptive sequence of σ-smooth distributions D, it achieves regret

E [Regret (A,D)] ≤ Õ

(√
Td log

(
T

σd

)
+ d log

(
T

σd

))
. (5)

Proof Construct H′ ⊆ H which is an ϵ-cover of H with respect to the uniform distribution. That is,

for each h ∈ H, there is some h′h ∈ H′
such that Prµ [h

′
h(x) ̸= h(x)] ≤ ϵ. It is known that, when H

has VC dimension d < ∞, such a class exists of size at most (41/ϵ)d. The algorithm that achieves

regret bound in Eq. (5) is simply to run Hedge with experts H′
. Using the notation RegretC(·, ·) to

express regret against the best hindsight predictor in C,

E
[
RegretH (A,D)

] (i)

≤ E
[
RegretH′ (A,D)

]
+ E

[
max
h∈H

min
h′∈H′

T∑
t=1

1
[
h(Xt) ̸= h′(Xt)

]]
(ii)

≤ O
(√

Td log(1/ϵ)
)
+ E

[
sup
g∈G

T∑
t=1

g(Xt)

]
,
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where (i) follows by triangle inequality and (ii) follows from classical guarantees of Hedge:

against the best (fixed) predictor of H′
the regret scales as O(

√
T ln |H′|). We denote the class G =

{h⊕ h′ : h ∈ H, h′ ∈ H′(h)} to be discrepancy indicators between H and its cover. By combining

Equation 3 and Lemma 5 setting α = 10 log(T ),

E
[
RegretH (A,D)

]
≤ O

(√
Td log(1/ϵ) +

√
ϵ

σ
T log(T )d log(1/ϵ) + T log(T )

ϵ

σ

)
(iii)

≤ Õ

(√
Td log

(
T

σd

)
+ d log

(
T

σd

))
,

after balancing with ϵ = O
(

dσ
T log(T ) log

(
T log T

dσ

))
■

2.2 ERM and Decoupling

Empirical risk minimization is a wildly successful paradigm in offline binary classification, how-

ever, its online version Follow-The-Leader (FTL) is known to fail fantastically. Consider the setting

where there are just two experts, and the initial loss is revealed (1/2, 1/2). By switching the losses

between (1, 0) and (0, 1) on each subsequent iteration, we may guarantee that FTL has loss as

T − O(1), while staying faithful to a single predictor achieves T/2 loss, leading to Ω(T ) regret.

This adversarial case exploits the brittleness of empirical minimization but can be sidestepped

by techniques such as FTRL and FTPL, where additional structure is introduced through convex

optimization or additional randomness, to achieve optimal rates.

Intuitively, this extreme adversarial behavior is impossible in the smoothed online setting, where

the “surprise" of new data is bounded. Is it possible that empirical risk minimization may once

again become viable, even optimal? We show that the error with respect to the squared loss of a

function class F ⊂
{
[0, 1]X

}
may be bounded under the guarantee that E [yt|xt] = f∗(xt) for some

f∗ ∈ F . Consider the simple strategy where each prediction f̂t is the empirical minimizer of the

sequence viewed thus far,

f̂t ∈ argmin
f∈F

t−1∑
s=1

(f(Xs)− Ys)
2. (6)

The main result is the following bound under the realizable and σ-smooth conditions:

Theorem 7 (Main result, [3]
1
). Let F ⊂

{
[−1, 1]X

}
be a function class and suppose that (Xt, Yt)t∈[T ] is

a sequence of well-specified data such that the Xt are σ-smooth with respect to some base measure µ and Yt
are conditionally ν2-subGaussian for some ν ≥ 0. If the learner chooses f̂t as Eq. (6), then

E

[
T∑
t=1

(f̂t(Xt)− f∗(Xt))
2

]
≤ 20 log3(T )

σ

√
T (1 + ν)(1 + logEµ

[
W2T log(T )/σ(256 · F)

]
).

where Wm(C) denotes the Will’s functional on C projected onto m datapoints.

In the interest of concision, we present only the most beautiful and central step from the proof

of Thm. 7 (in the author’s opinion!), which precisely formalizes the “bounded surprise" intuition

using the following simple lemma.

1

We remark that the dependence on σ−1
can be improved to

√
σ−1

by more delicate analysis, [1].
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Lemma 8. Let (at)t∈N be a sequence of real numbers with a0 = 1 and at ∈ [0, 1] for all t > 0. For K > 0
and t ∈ N, let

Bt(a,K) =

{
s < t : as ≥

K

s

∑
u<s

au

}
.

Then, for any ϵ ∈ (0, 1), it holds that
1
T |BT (a,K)| ≤ ϵ as long as K ≥ 2 log(T )

ϵ .

Using this lemma, it is possible to decouple the adversary and player using a tangent sequence of

data instead, opening the gates for more standard concentration approaches.

Lemma 9 (Smooth Decoupling). Let (Xt) ⊂ X be a sequence of random variables and let gt : X →
[0, 1] be a sequence of random function adapted to filtration (Ht)t≥0 such that gt is Ht−1-measurable and

Xt|(Ht−1, gt) is σ-smooth with respect to some measure µ. Then, for a tangent sequence X ′
s generated using

the same filtration,

E

[
T∑
t=1

gt(Xt)

]
≤ log2(T )

σ

√√√√2T · E

[
T∑
t=1

1

t

t−1∑
s=1

gt(X ′
s)]

]
Proof We first change the measure of adversarial data to the base measure µ.

E
X1,...XT

[
T∑
t=1

gt(Xt)

]
= E

[
T∑
t=1

E
Xt∼pt

[gt(Xt)|gt,Ht−1]

]

= E

[
T∑
t=1

E
Z∼µ

[
dpt
dµ

(Z)gt(Z)|gt,Ht−1

]]

= EZEgt

[
T∑
t=1

dpt
dµ

(Z)gt(Z)

]
.

We emphasize that Z is a single draw from µ and independent of X1, ..., XT . Using Lemma 8,

we can split the summation by inspecting the sequence at(Z) = σ · dpt
dµ (Z) ∈ [0, 1] and noting that

|BT (a(Z),K)| ≤ ϵT whenever K ≥ 2 log(T )/ϵ. Thus,

EZEgt

[
T∑
t=1

dpt
dµ

(Z)gt(Z)

]
= EZEgt

[
T∑
t=1

dpt
dµ

(Z)gt(Z)1 [t ∈ BT (a(Z),K)]

]

+ EZEgt

[
T∑
t=1

dpt
dµ

(Z)gt(Z)1 [t /∈ BT (a(Z),K)]

]
(i)

≤ 1

σ
EZ

[
T∑
t=1

1 [t ∈ BT (a(Z),K)]

]
+ EZEgt

[
T∑
t=1

Kp̃t(Z)gt(Z) +
K

σt

]
(ii)

≤ ϵT

σ
+

K log(T )

σ
+K · Egt

[
T∑
t=1

1

t

t−1∑
s=1

gt(X
′
s)

]
where in (i) we used the boundedness of gt and σ-smoothness and in (ii) we applied Lemma 8

where p̃t is shorthand for
1
t

∑t−1
s=1

dps
dµ . From the independence of Z from X1, ..., XT emerges the

tangent sequence X ′
s. The statement is shown by balancing ϵ =

√
2
T · E

[∑T
t=1

1
t

∑t−1
s=1 gt(X

′
s)
]
. ■
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2.3 Hedge and ERM, Coupling and Decoupling!

Results in the previous section are highly specialized in that they study the square loss and

realizability in the form of a guarantee that Yt = f(Xt) + ηt for η being ν2-subGaussian. An

astonishingly simple algorithm Cover achieves sublinear Õ
(
T 2/3

)
(oblivious) smoothed regret by

running Hedge on a dynamically created cover of experts. Further, it holds in the agnostic setting,

where there is no guarantee on the marginal distribution Yt|Xt; the objective is simply to compete

against F . The algorithm is as follows:

Algorithm 1 Construction of the Cover algorithm

1: Input: horizon T , number of epochs K ≤ T
2: Let Tk =

⌊
k T
K

⌋
for k ∈ {0, . . . ,K}

3: for k ∈ [K] do
4: Construct a minimal-size cover Sk ⊂ F such that for any f ∈ F there exists g ∈ Sk with

f(xs) = g(xs) for s ∈ [Tk−1]
5: For iterations t ∈ (Tk−1, Tk], run any learning-with-expert-advice algorithm (e.g., Hedge)

with expert set Sk

6: end for

Theorem 10. Let F ⊂
{
{0, 1}X

}
be a class of VC dimension d. Suppose that (xt)t≥1 is σ-smooth against

base measure µ. Then Algorithm 1 run with K = O
(
log T · (T/d)1/3σ−2/3

)
makes prediction ŷt satisfying

E

[
T∑
t=1

ℓt(ŷt)− inf
f∈F

ℓt(f(xt))

]
≤ C log2 T

(
dT 2

σ

)1/3

.

We remark that in a clever recursive construction R-Cover [1] is able to achieve the optimal

rate, though the discussion is slightly beyond the scope of this survey. It remains an open and

very interesting problem (in the author’s opinion!) if the form of R-Cover may be improved to be

iterative rather than recursive and/or ERM oracle efficient.

Theorem 11. Fix T ≥ 1 and let F ⊂
{
{0, 1}X

}
be as before. Suppose that (xt)t≥1 is σ-smooth with

respect to µ. Then R-Cover achieves predictions ŷt satisfying

E

[
T∑
t=1

ℓt(ŷt)− inf
f∈F

ℓt(f(xt))

]
≤ C log5/2(T )

√
dT

σ
,

which is the information-theoretically optimal dependence on parameters.

2.3.1 Oblivious Analysis of Theorem 10

We refine the hedging approach of [4] using the fundamental “bounded surprise" insight from [3].

Recall the proof follows in two parts: the analysis of Hedge over the cover, and the discretization

error inherited by using the approximation. If we have nearly evenly sized epochs, so ∆T :=
maxk (Tk − Tk−1) = O (T/K), this first part may be bounded as

C
∑
k∈[K]

√
(Tk − Tk−1) log (T d) ≤ O

(√
KdT log T

)
,
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where we have used Sauer-Shelah’s Lemma to bound the number of experts over T iterations as

O(T d) and then Cauchy-Schwarz inequality to collate into a single expression.

We now address the second step. Consider the distortion of a cover created at t0 at a time step

t in the future through its ℓ1 disagreement

γt0(t) = sup
f,g∈F

f(xs)=g(xs),s∈[t0]

Pr [f(xt) ̸= g(xt)|Ht−1] = sup
f,g∈F

f(xs)=g(xs),s∈[t0]

Pr
x∼µt

[f(xt) ̸= g(xt)]

We argue that controlling this quantity is sufficient for regret bounds. Indeed, suppose that

the optimal function in hindsight was f∗ ∈ F and let fk ∈ Sk be the corresponding representative

from the cover during epoch k. We have the expectation bound on discretization bounded as

E

 ∑
k∈[K]

Tk∑
t=Tk−1+1

ℓt(fk(xt))− ℓt(f
∗(xt))

 ≤ E

 ∑
k∈[K]

Tk∑
t=Tk−1+1

γTk−1(t)

 .

Using the surprise bound method, we can show epochs for which significant distortions occur are

bounded by Õ(1/(qσ)).

Lemma 12. Let 0 = T0 < T1 < · · · < Tk = T define epochs and fix any parameter q, δ ∈ (0, 1] and denote

w(T, δ) = d log
(
T
σ log 1

δ

)
+ log T

δ + 2. Then, with probability at least 1− δ,∣∣∣∣∣∣
k ∈ [K] :

Tk∑
t=Tk−1+1

γTk−1
(t) · 1

[
γTk−1

(t) ≥ q
]
≥ w(T, δ)


∣∣∣∣∣∣ ≤ C

log2 T

qσ
.

With the control endowed by the previous lemma, we may finish by direct calculation

∑
k∈[K]

Tk∑
t=Tk−1+1

γTk−1(t)

(i)

≤ q0T +

l0∑
l=0

∑
k∈[K]

Γk,l︷ ︸︸ ︷
Tk∑

t=Tk−1+1

γTk−1
(t)1

(
γTk−1

(t) ∈
[
2lq0, 2

l+1q0

])
(ii)

≤ q0T + (l0 + 1)K · w(T, δ) +
l0∑
l=1

2l+1q0∆T | {k ∈ [K] : Γk,l ≥ w(T, δ)} |

(iii)

≤ q0T + (l0 + 1)K · w(T, δ) +
l0∑
l=0

2l+1q0∆T · C log2 T

2lq0σ
≤ log3 T

Kσ
· T

In (i) we partitioned the range [0, 1] of γ into dyadic intervals, in (ii) we separated Γk,l into

surprising and unsurprising events and applied pessimistic bounds, and in (iii) we finally applied

Lemma 12 and took the summation. Putting the regret terms together, we get

E

[
T∑
t=1

ℓt(ŷt)− inf
f∈F

ℓt(f(xt))

]
≤ O

(√
KdT log T +

log3 T

Kσ
· T
)
,

and balancing K as before gives the desired Õ
(
T 2/3

)
rate.

3 ChatGPT Statement

ChatGPT or any other AI assistance was not used.
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