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In the problem of correlation clustering, the input is a graph G = (V, E) and a mapping f : E→
{±1} where f (e) indicates whether the endpoints of e are ‘similar’ or ‘dissimilar’. Informally,
the goal is to find a partition (or cluster) V = [V1, V2, .., Vk] such maximizing the number of +1
edges within clusters and and−1 edges between clusters (max-agree) or, equivalently, minimize
the count of −1 edges within a cluster and +1 edges between clusters (min-disagree). The max-
agree setting is resolved with a PTAS (BBC04), however, note that in application, we care more
about the mistakes – suboptimality in the sense of min-disagree formulation – which does not
follow from approximation of max-agree. Additionally, this problem is accompanied by APX-
hardness result; so, what is the best achievable approximation?

More formally, the min-disagree objective is

min
[V1,V2,...,Vk]

k

∑
i=1

∑
u∈Vi

[
∑

v∈Vi

1[(u, v) ∈ E−] + ∑
v/∈Vi

1[(u, v) ∈ E+]

]
, (1)

where E− = f−1(−1) and E+ = f−1(+1) are the negative and positive edges, respectively. For
the rest of this reaction paper, we will try to understand progress and barriers in approximation
algorithm design for the min-disagree formulation when G = Kn, the complete graph.1 In class,
we concluded with showing the integrality gap of 2 for the ILP method (later, Eq. 2); we spend
the first half reviewing methods in this direction, and the second on (very) recent LP-based
approaches.

1 Worse than 2 Approximation

A first result in correlation clustering by Bansal, Blum, and Chawla (BBC04) gave a PTAS for
max-agree and a constant (17, 433) approximation algorithm for min-disagree. Though the con-

1With regard to the page limit, we will focus strictly on providing polynomial time running-time algorithms.
Unsurprisingly, a major and interesting concern is doing this with little memory/linear time/in parallel.
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stant is terrible, their proof strategy is valuable and later sharpened by (ACN08). They effectively
count “bad triangles”, T : 3-cliques u, v, w ∈ V with inconsistent edge labelings. Noting that any
clustering collects at least one error per bad triangle, they show an algorithm with controlled
error in this counting of |T |, thus bringing the approximation.

Through an entirely different perspective of the ILP, (CGW03) show a much improved 4-
approx. Consider m = O(n2) variables of the form xij which is 0 if vi, vj are in the same cluster
and 1 otherwise, we can frame the min-disagree problem as,

min. ∑
E+

xij + ∑
E−

(1− xij)

subject to xik ≤ xij + xjk ∀(i, j, k) ∈ (V
3)

xij ∈ {0, 1}, ∀(i, j) ∈ (V
2)

(2)

where the inequality constraint enforces cluster membership to be an equivalence. By relaxing
Eq. 2 allowing xij ∈ [0, 1], the solution {xe1 , ..., xem} defines a semi-metric space on vertices, say
S. The rounding approach is intuitive: iterating over unclustered u ∈ V, find T = BS(u, 1/2)
and determine the average distance of T\{u} from u; if this exceeds 1/4 (i.e., ‘many’ points are
peripheral), designate {u} as a singleton cluster, and if not let T be the cluster. This work also
demonstrates the integrality gap of 2 (meaning that the best possible ILP rounding procedure
can only hope to achieve 2-approx.) and claims that even finding a 3-approx. would require a
totally different strategy.

In fact, (ACN08) shows that, with a little bit of randomness, a 3-approx. can be achieved
by the following simple procedure: pick an un-clustered vertex v ∈ V uniformly at random,
cluster it with all unclustered u ∈ V such that (u, v) ∈ E+, and repeat until all vertices are
clustered. Continuing this probabilistic line of reasoning, rounding Eq. 2 by adding vertex w
to cluster centered at u with probability 1− xuw brings a 2.5 approximation. The final work in
this direction (CMSY15) refines the rounding of positive edges to 1− f (x) where f is a carefully
clipped quadratic, and shows the current best rounding approximation for Eq. 2 at 2.06.

2 Breaking 2-Approximation

Using the Sherali-Adams heirarchy, (CALN23) was the first to show a 1.994 + ϵ approximation.
The rough intuition here is to add many more constraints to the LP relaxation in the form of
variables for sets of vertices, and shows a rounding that achieves roughly the integrality gap. Us-
ing a pre-clustering approach (CALLN23) is able to bring a 1.73-approximation and lighten the
analysis of their earlier work. The most recent result from this group (CCAL+24) is a remark-
able 1.437 approximation based on an exponentially large LP which can be rounded close to its
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integrality gap 4/3. This final result unifies previous LP rounding schemes using the following
cluster LP and interestingly does not first pass through an ILP!

For each set S ⊆ V, let variable zS ∈ [0, 1] roughly indicate whether S appears in the optimal
partition (with larger value being more likely) and xuv be the probability u, v are in the same
cluster. The Cluster LP is as follows:

min. ∑
i,j∈E+

xij + ∑
ij∈E−

(1− xij)

s.t. ∑
S∋u

zS = 1 ∀u ∈ V

∑S∋{u,v} zS = 1− xuv ∀(u, v) ∈ (V
2)

zS ≥ 0 ∀S ⊆ V

(3)

The objective is familiar from the earliest LP formulation; the first constraint ∑ zS = 1 enforces
that each u ∈ V is in exactly one set S (fractionally, think of this as a normalization) and the
second constraint ensures that the definition of xuv, the probability u, v are in different clusters,
is consistent with z-variables. The main, surprising result is that the cluster LP can be approxi-
mated efficiently (for fixed ϵ) due to its nice structure:

Theorem 2.1 (Thm 1, (CCAL+24)). In time npoly(1/ϵ) we can output a solution ({zS}S⊆V , (xuv)uv∈(V
2)
)

to the cluster LP with objective at most (1 + ϵ)opt.

From this approximate solution, there are two simple rounding schemes, focusing on the z or x
variables; the algorithm returns the better of these. In the first, cluster-based approach, we select a
set S ⊆ V with probability given by zS and set it aside:

1. Initialize clusters C ← 0, V′ ← V

2. while V′ ̸= ∅,

3. randomly choose any cluster S ⊆ V with probability zS
∑S′ zS′

4. if V′ ∩ S ̸= ∅, then C ← C ∪ {V′ ∩ S}, V′ ← V′\S

Thanks to the constraints in our cluster LP, it is easy to relate the clusters that form to x values,

Lemma 2.2 (Lemma 6 (CCAL+24)). For any uv ∈ (V
2) the probability u, v are separated in the

clustering output by cluster-based rounding is 2xuv
1+xuv

.

In the other, pivot-based rounding, we include all positive neighbors within a threshold 1/3
and amortize our error by including negative neighbors v with probability 1− xuv.
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1. Initialize clusters C ← 0, V′ ← V

2. while V′ ̸= ∅,

3. randomly choose a pivot u ∈ V′, define cluster C ← {v ∈ V′ ∩ N+(u) : xuv ≤ 1
3}

4. for each v ∈ V′ ∩ N−(u), add v to C with probability 1− xuv

5. pick some S containing u with probability zS (note that ∑S∋u zS = 1, by constraint)

6. Augment cluster C ← C ∪ {S ∩V′ ∩ N+(u)}

The analysis of pivot-based rounding is more detailed, but brings most of the approximation
gain: for any triple of unclustered vertices u, v, w ∈ V′, one analyzes the chance that any two
v, w will incur cost given that u is selected as the pivot. The peculiarity in step 4 – where we add
even negative neighbors with non-zero probability – is exactly what brings better approximation
guarantee than the earlier work.

2.1 Personal Thoughts

A particularly beautiful aspect of correlation clustering algorithms is that both LP rounding
and purely combinatorial methods have strong (and continually improving!) results. The field
seems to have progressed with the paradigms in theoretical computer science; initially totally
deterministic, then introducing randomness in selecting pivots, then using rounding techniques
from tractable continuous problems, and finally finding a balance between the methods.

I’m still not certain how certain steps in this current proof can be implemented efficiently,
in particular, sampling from a distribution with exponential support (the zS).2 To just calculate

∑i′ zi′ seems O(2n), so the algorithm together should take O(2n) if ϵ ≥ Ω(log n/n), rather than
nO(poly(1/ϵ)). Of course, if we take ϵ, arbitrarily small, then this issue vanishes; regardless, is
there a nicer way of sampling? (Probably not.)

A final remark in the direction of the “qualitative” nature of this problem: there is only 1
bit of information between any two vertices, given by ±1. What if there were instead k bits? A
chromatic correlation clustering problem has been studied in (BGGU12) – where the edges are
colored {0, 1, 2} and the objective is again to group similar color edges – but has not received as
much attention. Does this problem have applications (purportedly, to protein folding)? How do
the methods from vanilla correlation clustering extend?

2Assuming you have access to as many coin flips as needed, but the distribution is “hard to describe”; there is
no more succinct definition than the tuple of zi’s.
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3 Loose Connection from Clustering to RGGs

I think that clustering could also be related to a nice RGG probem, from (DGLU11).3 In an
RGG, each vertex is selected geometrically, like from the surface of the sphere, and edges encode
information about pairs of vertices, in particular, having absolute inner-product larger than τ ∈
[0, 1]4. To make the problem of distinguishing such an RGG from the Erdös-Renyi G(n, p) non-
trivial, we select τ such that the expected degree np is equal for both graphs. A suite of beautiful
combinatorial tests are known using the simple fact of positive correlation induced by geometry:

P [(u, w) ∈ E|(v, u) ∈ E, (v, w) ∈ E] > p.

In simple terms, 3-cliques (triangles) are more likely to form in an RGG than in a purely random
graph, so simply counting how many of the (V

3) vertices form a triangle can give a separation
(the optimal test is a centered version called a “signed triangle” (BDER15)). However, G(n, p) is a
strawman for correlation testing – what if both graphs have correlated edge structure, particularly:

Problem 3.1. Consider the RGG’s induced byN (0, In) andN (0, In + θvv⊤) where v ∈ Rn: what
is an (efficient) statistical test for distinguishing?

As far as we can tell, this problem has not been studied in the literature, and intuitively, a
triangle-counting approach should be weakened, as both graphs have correlated edges. I claim
that perhaps a clustering metric, like the ILP in Eq. 2 (or its relaxation) may be used to distin-
guish such graphs – a graph drawn from spiked covariance might be more “clusterable” (in the
raw data, we might see two hubs around +kv and −kv rather than the even spread), hence have
a smaller OPT than the identity covariance. It doesn’t seem likely that this would be an informa-
tion theoretically optimal tester (these are usually very simple, like counting triangles) but one
might expect to see some gap.

3.1 Experiment

Building RGG’s drawn as described in Problem 3.1 with dimension n = 25 and p = 0.5 and
various signal strengths, we find the following mean and standard deviation for the objectives:
As shown in the figure, using the fractional linear program as the objective sadly fails to yield
any separation, while the signed triangles still do a spectacular job. However, I still believe that
some clustering metric should be effective, to be studied in future projects :).

3Chandra and I were discussing this problem and variant a few months ago, which I thought was naturally
related to correlation clustering after learning about it. After these experiments, maybe not so much!

4In the sphere example, connectivity is exactly equivalent to being close in ℓ2.
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Figure 1: Plot of the Fractional LP vs. Signed Triangle testers, std. deviation plotted as error
bars.
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