Robustness Implies Privacy in Statistical Estimation

Spencer Cockerell, Anish Jayant

November 20, 2023

Spencer Cockerell, Anish Jayant Robustness Implies Privacy in Statistical Estimation

- Statistical Estimation and privacy
- Exponential Mechanism
- Robust-Private Reduction
- Application to Gaussian Mean Estimation

A B M A B M

• Statistical Estimation and privacy

- Exponential Mechanism
- Robust-Private Reduction
- Application to Gaussian Mean Estimation

伺 ト イヨト イヨト

Statistical Estimation

Central Question: Given that distribution D is parametrized by θ, can we produce θ from samples such that ||θ - θ|| is small?

Strategy: Find unbiased estimator F, draw X₁, ..., X_n ∼ D i.i.d., evaluate F(X) and use concentration bounds

•
$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
 concentrates about μ .

ь « Эь « Эь

Statistical Estimation

Central Question: Given that distribution D is parametrized by θ, can we produce θ from samples such that ||θ - θ|| is small?

Strategy: Find unbiased estimator F, draw X₁,..., X_n ∼ D i.i.d., evaluate F(X) and use concentration bounds

•
$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
 concentrates about μ .

ь « Эь « Эь

Differential Privacy

- Intuition: "Learn nothing about the individual while learning useful information about the population"
 - No individual should change F by 'too much'

Definition (Differential Privacy)

An algorithm \mathcal{A} : dataset $\rightarrow \Theta$ is (ε, δ) -differentially private if, for all *adjacent datasets* $\mathbf{X} = \{X_1, ..., X_n\}$ and $\mathbf{X}' = \{X_1, ..., X'_i, ..., X_n\}$ and any $S \subset \Theta$,

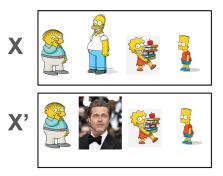
$$\Pr[\mathcal{A}(\mathbf{X}') \in S] \le e^{\varepsilon} \Pr[\mathcal{A}(\mathbf{X}) \in S] + \delta$$

Is it possible to produce *efficient* and *accurate* statistical estimates that uphold differential privacy?

周 ト イ ヨ ト イ ヨ ト

Private Estimation

- Intuition: "Learn nothing about the individual while learning useful information about the population"
 - $\bullet\,$ No individual should change ${\cal A}$ by 'too much'



Is it possible to produce *efficient* and *accurate* statistical estimates that uphold privacy?

Operationalizing DP

Task: Given samples $X_1, ..., X_n$ you predict an outcome $r \in \mathcal{R}$. A oracle $q : \mathcal{D}^n \times \mathcal{R} \to \mathbb{R}$ grades your response. Design a differentially private mechanism \mathcal{M} that maximizes q.

Assumption: q is 'well-behaved,' adjacent datasets d, d' satisfy $|q(d', r) - q(d, r)| \le \Delta q$ for all r.

ь « Эь « Эь

Operationalizing DP

Task: Given samples $X_1, ..., X_n$ you predict an outcome $r \in \mathcal{R}$. An oracle $q : \mathcal{D}^n \times \mathcal{R} \to \mathbb{R}$ grades your response. Design a differentially private mechanism \mathcal{M} that maximizes q.

Definition (Exponential Mechanism)

Randomized mechanism \mathcal{M} , which selects r given dataset d as

$$\Pr[\mathcal{M}(d) = r] \propto \exp(\varepsilon q(d, r))$$

where $\varepsilon \geq 0$.

• What happens with values assigned to adjacent d, d'?

伺下 イヨト イヨト

Operationalizing DP

Lemma (Exponential Mechanism)

Randomized mechanism \mathcal{M} , which selects r given dataset d as

$$\Pr[\mathcal{M}(d) = r] \propto \exp(\varepsilon q(d, r))$$

satisfies $(2 \varepsilon \Delta q, 0)$ -DP.

Proof Sketch.

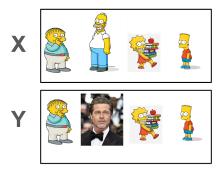
Show $\Pr[\mathcal{M}(d) = r]$ and $\Pr[\mathcal{M}(d') = r]$ can only be $\exp(2\varepsilon \Delta q)$ apart. Result follows by definition.

伺 ト イヨト イヨト

Contamination

Definition (Strong Contamination Model)

The draw $X_1, ..., X_n$ first is given to an adversary, who *swaps* $\eta \cdot n$ samples, and we see the result $Y_1, ..., Y_n$.

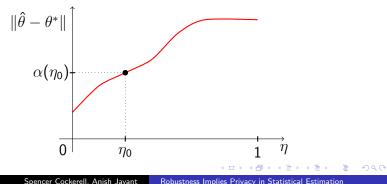


Robust Estimator

Definition (Strong Contamination Model)

The draw $X_1, ..., X_n$ first is given to an adversary, who *swaps* $\eta \cdot n$ samples, and we see the result $Y_1, ..., Y_n$.

• A robust estimator deals with $Y_1, ..., Y_n$ and produces $\hat{\theta}$ with property $\|\hat{\theta} - \theta^*\| \le \alpha(\eta)$, whp.



Black-box Reduction

- **Goal**: Produce an *accurate* summary of \mathcal{D} while respecting individual *privacy*.
 - Weapons: exponential mechanism, robust estimator

- 3 b - 4 3 b

Black-box Reduction

- **Goal**: Produce an *accurate* summary of \mathcal{D} while respecting individual *privacy*.
 - Weapons: exponential mechanism, robust estimator

• Idea: Give each summary statistic θ a 'score' using the robust estimator

$$s(\mathbf{X}, heta) = \min\{d(\mathbf{X}, \mathbf{X}') : \|\hat{ heta}(\mathbf{X}') - heta\| \le lpha(\eta_0)\}$$

- If $\theta = \theta^*$ is the true parameter, what is its score?
- Does a good θ have high or low score?

4 E 6 4 E 6

Black-box Reduction

• Idea: Give parameter estimate θ a 'score' using the robust estimator

$$s(\mathbf{X}, \theta) = \min\{d(\mathbf{X}, \mathbf{X}') : \|\hat{\theta}(\mathbf{X}') - \theta\| \le lpha(\eta_0)\}$$

Lemma (Robust-Private Reduction)

Randomized mechanism \mathcal{M} , which selects θ given dataset **X** as

$$\Pr[\mathcal{M}(\mathbf{X}) = \theta] \propto \exp(-\varepsilon \cdot s(\mathbf{X}, \theta))$$

→ ∃ → < ∃</p>

Privacy Guarantees

• **Question**: Does \mathcal{M} satisfy notions of differential privacy? How strict?

$$s(\mathbf{X}, heta) = \min\{d(\mathbf{X},\mathbf{X}'): \|\hat{ heta}(\mathbf{X}') - heta\| \leq lpha(\eta_0)\}$$

How large can Δs = |s(X, θ) - s(Y, θ)| be if X and Y are adjacent?

何 ト イヨ ト イヨ ト

э

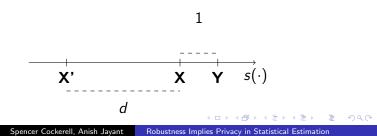
Privacy Guarantees

• **Question**: Does \mathcal{M} satisfy notions of differential privacy? How strict?

$$m{s}(\mathbf{X}, heta) = \min\{d(\mathbf{X},\mathbf{X}'): \|\hat{ heta}(\mathbf{X}') - heta\| \leq lpha(\eta_0)\}$$

• How large can $\Delta s = |s(\mathbf{X}, \theta) - s(\mathbf{Y}, \theta)|$ be if **X** and **Y** are adjacent?

$$\Delta s \leq 1$$



Privacy Guarantees

Lemma (Robust-Private Reduction)

Randomized mechanism \mathcal{M} , which selects θ given dataset **X** as

$$\Pr[\mathcal{M}(\mathbf{X}) = heta] \propto \exp(-arepsilon \cdot s(\mathbf{X}, heta))$$

satisfies (2 ε , 0)-DP

Proof.

$$\Delta s = |s(\mathbf{X}, \theta) - s(\mathbf{X}', \theta)| \le 1$$
, Exponential Mechanism Lemma.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

э

Accuracy

Question: Say we draw many samples using $\mathcal{M}(\mathbf{X})$, should we expect many points close to θ^* ?

$$\Pr[\mathcal{M}(\mathbf{X}) = \theta] \propto \exp(-\varepsilon \cdot s(\mathbf{X}, \theta))$$

 We select with high probability from low-score regions, does low-score ⇒ high-accuracy?

• • = • • = •

Consider (\mathbf{X}, θ) with score ηn , wts $\|\theta - \theta^*\| \leq$ something • For the \mathbf{X}' our *s* 'finds',

$$\|\hat{\theta}(\mathbf{X}') - \theta\| \le \alpha(\eta_0)$$

• • = • • = •

3

Accuracy

Consider (\mathbf{X}, θ) with score ηn , wts $\|\theta - \theta^*\| \leq$ something • For the \mathbf{X}' our *s* 'finds',

$$\|\hat{\theta}(\mathbf{X}') - \theta\| \le \alpha(\eta_0)$$

• By robustness

$$\|\theta^* - \hat{\theta}(\mathbf{X}')\| \le \alpha(\eta)$$

• • = • • = •

э

Accuracy

Consider (\mathbf{X}, θ) with score ηn , wts $\|\theta - \theta^*\| \leq \text{something}$ • For the \mathbf{X}' our *s* 'finds',

$$\|\hat{\theta}(\mathbf{X}') - \theta\| \le \alpha(\eta_0)$$

• By robustness

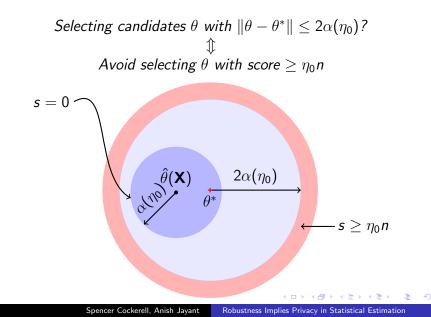
$$\|\theta^* - \hat{\theta}(\mathbf{X}')\| \le \alpha(\eta)$$

• So, by triangle inequality

$$\| heta - heta^*\| \le lpha(\eta_0) + lpha(\eta) \le egin{cases} 2lpha(\eta_0) & ext{if } \eta \le \eta_0 \ 2lpha(\eta) & ext{else} \end{cases}$$

Since α is non-decreasing, small score \Rightarrow small $\|\theta - \theta^*\|$

Accuracy, Concentration



Can we bound chances of selecting score $\geq \eta_0 n$? By definition,

$$\Pr[\mathcal{M}(\mathbf{X}) = \theta] = \frac{\exp(-\varepsilon \cdot s(\mathbf{X}, \theta))}{\int_{\Theta} \exp(-\varepsilon \cdot s(\mathbf{X}, \theta))}$$

so, for any $\eta \geq \eta_0$,

$$\begin{aligned} \Pr[\mathcal{M}(\mathbf{X}) \text{ has score } \eta n] &= \frac{(\text{volume of } \eta n \text{ points}) \cdot e^{-\varepsilon \eta n}}{\sum_{0 \leq \gamma \leq 1} (\text{volume of } \gamma n \text{ points}) \cdot e^{-\varepsilon \gamma n}} \\ &\leq \frac{V_{2\alpha(\eta)} \cdot e^{-\varepsilon \eta n}}{V_{\alpha(\eta_0)} \cdot e^0} \end{aligned}$$

ヨトイヨト

Can we bound chances of selecting score $\geq \eta_0 n$?

$$\sum_{t=\eta_0 n}^{1 \cdot n} \Pr[\mathcal{M}(\mathbf{X}) \text{ has score } t] \leq \sum_{t=\eta_0 n}^{1 \cdot n} \frac{V_{2\alpha(t/n)} \cdot e^{-\varepsilon\eta n}}{V_{\alpha(\eta_0)}}$$

$$\vdots$$

$$\leq O(1) \cdot \max_{\eta_0 \leq \eta \leq 1} \left\{ (\eta n)^2 \cdot \frac{V_{2\alpha(\eta)}}{V_{\alpha(\eta_0)}} \cdot \exp(-\varepsilon\eta n) \right\} \leq \beta$$

• • = • • = •

э

Accuracy, Concentration

Theorem (Robust-Private Accuracy Guarantee)

Let $X_1, ..., X_n \sim p_{\theta^*}$ where $\theta^* \in \Theta \subseteq \mathbb{R}^d$, we have a random θ drawn by $\mathcal{M}(\mathbf{X})$ has $\|\theta - \theta^*\| \leq 2\alpha(\eta_0)$ given

$$n \geq \max_{\eta_0 \leq \eta \leq 1} rac{d\lograc{2lpha(\eta)}{lpha(\eta_0)} + \log(1/eta) + O(\log\eta n)}{\etaarepsilon}$$

samples, with probability $1-2\beta$.

• • = • • = •

Accuracy, Concentration

Theorem (Robust-Private Accuracy Guarantee)

Let $X_1, ..., X_n \sim p_{\theta^*}$ where $\theta^* \in \Theta \subseteq \mathbb{R}^d$, we have a random θ drawn by $\mathcal{M}(\mathbf{X})$ has $\|\theta - \theta^*\| \leq 2\alpha(\eta_0)$ given

$$n \geq \max_{\eta_0 \leq \eta \leq 1} rac{d \log rac{2lpha(\eta)}{lpha(\eta_0)} + \log(1/eta) + O(\log \eta n)}{\eta arepsilon}$$

samples, with probability $1 - 2\beta$.

Fact: For Gaussians where $\|\mu\|_2 \le R$, robust estimation produces $\|\hat{\mu} - \mu\|_2 \le O(c + \eta)$ with $n = O(d/c^2)$ samples

伺下 イヨト イヨト

Theorem (Private Gaussian Mean Estimation)

Let $\mu \in \mathbb{R}^d$ where $\|\mu\|_2 \leq R$ is unknown. There is an ε -DP algorithm that takes n i.i.d. samples from N(μ , I) that with high probability outputs $\hat{\mu}$ such that $\|\mu - \hat{\mu}\| \leq \alpha$ where

$$n = \tilde{O}\left(\frac{d}{\alpha^2} + \frac{d}{\alpha\varepsilon} + \frac{d\log R}{\varepsilon}\right)$$

standard cost for robustness and cost of privacy

• (
$$arepsilon, \delta$$
)-DP relaxes R to $1/\delta$



- Statistical Estimation and Desiderata
 - Individual privacy preserved in population estimates
 - Estimation despite strong corruption through robustness
- Privacy-preserving algorithms
 - Randomized exponential mechanism, 'maximize' *q* privately!
- A private algorithm that's accurate in context
 - Use some 'robust backbone' as *q*, why does this make sense?
 - Prove repeated sampling concentrates close to θ^{*}

ь « Эь « Эь