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Statistical Estimation

Central Question: Given that distribution D is
parametrized by θ, can we produce θ̂ from samples such
that ∥θ̂ − θ∥ is small?

Strategy: Find unbiased estimator F , draw
X1, ...,Xn ∼ D i.i.d., evaluate F (X) and use
concentration bounds

µ̂ = 1
n

∑n
i=1 Xi concentrates about µ.
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Differential Privacy

Intuition: “Learn nothing about the individual while
learning useful information about the population”

No individual should change F by ‘too much’

Definition (Differential Privacy)

An algorithm A : dataset → Θ is (ε, δ)-differentially private if,
for all adjacent datasets X = {X1, ...,Xn} and
X′ = {X1, ...,X

′
i , ...,Xn} and any S ⊂ Θ,

Pr[A(X′) ∈ S ] ≤ eε Pr[A(X) ∈ S ] + δ

Is it possible to produce efficient and accurate statistical
estimates that uphold differential privacy?
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Private Estimation

Intuition: “Learn nothing about the individual while
learning useful information about the population”

No individual should change A by ‘too much’

Is it possible to produce efficient and accurate statistical
estimates that uphold privacy?
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Operationalizing DP

Task: Given samples X1, ...,Xn you predict an outcome r ∈ R.
A oracle q : Dn ×R → R grades your response. Design a
differentially private mechanism M that maximizes q.

Assumption: q is ‘well-behaved,’ adjacent datasets d , d ′

satisfy |q(d ′, r)− q(d , r)| ≤ ∆q for all r .
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Operationalizing DP

Task: Given samples X1, ...,Xn you predict an outcome r ∈ R.
An oracle q : Dn ×R → R grades your response. Design a
differentially private mechanism M that maximizes q.

Definition (Exponential Mechanism)

Randomized mechanism M, which selects r given dataset d as

Pr[M(d) = r ] ∝ exp(εq(d , r))

where ε ≥ 0.

What happens with values assigned to adjacent d , d ′?
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Operationalizing DP

Lemma (Exponential Mechanism)

Randomized mechanism M, which selects r given dataset d as

Pr[M(d) = r ] ∝ exp(εq(d , r))

satisfies (2ε∆q, 0)-DP.

Proof Sketch.

Show Pr[M(d) = r ] and Pr[M(d ′) = r ] can only be
exp(2ε∆q) apart. Result follows by definition.
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Contamination

Definition (Strong Contamination Model)

The draw X1, ...,Xn first is given to an adversary, who swaps
η · n samples, and we see the result Y1, ...,Yn.
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Robust Estimator

Definition (Strong Contamination Model)

The draw X1, ...,Xn first is given to an adversary, who swaps
η · n samples, and we see the result Y1, ...,Yn.

A robust estimator deals with Y1, ...,Yn and produces θ̂
with property ∥θ̂ − θ∗∥ ≤ α(η), whp.

η

∥θ̂ − θ∗∥

0 η0

α(η0)

1
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Black-box Reduction

Goal: Produce an accurate summary of D while
respecting individual privacy .

Weapons: exponential mechanism, robust estimator
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Black-box Reduction

Goal: Produce an accurate summary of D while
respecting individual privacy .

Weapons: exponential mechanism, robust estimator

Idea: Give each summary statistic θ a ‘score’ using the
robust estimator

s(X, θ) = min{d(X,X′) : ∥θ̂(X′)− θ∥ ≤ α(η0)}

If θ = θ∗ is the true parameter, what is its score?
Does a good θ have high or low score?
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Black-box Reduction

Idea: Give parameter estimate θ a ‘score’ using the
robust estimator

s(X, θ) = min{d(X,X′) : ∥θ̂(X′)− θ∥ ≤ α(η0)}

Lemma (Robust-Private Reduction)

Randomized mechanism M, which selects θ given dataset X
as

Pr[M(X) = θ] ∝ exp(−ε · s(X, θ))
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Privacy Guarantees

Question: Does M satisfy notions of differential
privacy? How strict?

s(X, θ) = min{d(X,X′) : ∥θ̂(X′)− θ∥ ≤ α(η0)}

How large can ∆s = |s(X, θ)− s(Y, θ)| be if X and Y
are adjacent?
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Privacy Guarantees

Question: Does M satisfy notions of differential
privacy? How strict?

s(X, θ) = min{d(X,X′) : ∥θ̂(X′)− θ∥ ≤ α(η0)}

How large can ∆s = |s(X, θ)− s(Y, θ)| be if X and Y
are adjacent?

∆s ≤ 1

s(·)X’ X Y

d

1
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Privacy Guarantees

Lemma (Robust-Private Reduction)

Randomized mechanism M, which selects θ given dataset X
as

Pr[M(X) = θ] ∝ exp(−ε · s(X, θ))

satisfies (2ε, 0)-DP

Proof.

∆s = |s(X, θ)− s(X′, θ)| ≤ 1, Exponential Mechanism
Lemma.
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Accuracy

Question: Say we draw many samples using M(X), should
we expect many points close to θ∗?

Pr[M(X) = θ] ∝ exp(−ε · s(X, θ))

We select with high probability from low-score regions,
does low-score ⇒ high-accuracy?
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Accuracy

Consider (X, θ) with score ηn, wts ∥θ − θ∗∥ ≤ something

For the X′ our s ’finds’,

∥θ̂(X′)− θ∥ ≤ α(η0)

By robustness

∥θ∗ − θ̂(X′)∥ ≤ α(η)

So, by triangle inequality

∥θ − θ∗∥ ≤ α(η0) + α(η) ≤

{
2α(η0) if η ≤ η0

2α(η) else
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Accuracy

Consider (X, θ) with score ηn, wts ∥θ − θ∗∥ ≤ something

For the X′ our s ’finds’,

∥θ̂(X′)− θ∥ ≤ α(η0)

By robustness

∥θ∗ − θ̂(X′)∥ ≤ α(η)

So, by triangle inequality

∥θ − θ∗∥ ≤ α(η0) + α(η) ≤

{
2α(η0) if η ≤ η0

2α(η) else

Since α is non-decreasing, small score ⇒ small ∥θ − θ∗∥
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Accuracy, Concentration

Selecting candidates θ with ∥θ − θ∗∥ ≤ 2α(η0)?
⇕

Avoid selecting θ with score ≥ η0n

2α(η0)

s = 0

α(
η 0
)

s = 3

s ≥ η0n

θ̂(X)

θ∗
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Accuracy, Concentration

Can we bound chances of selecting score ≥ η0n?

By definition,

Pr[M(X) = θ] =
exp(−ε · s(X, θ))∫
Θ
exp(−ε · s(X, θ))

so, for any η ≥ η0,

Pr[M(X) has score ηn] =
(volume of ηn points) · e−εηn∑

0≤γ≤1(volume of γn points) · e−εγn

≤
V2α(η) · e−εηn

Vα(η0) · e0
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Accuracy, Concentration

Can we bound chances of selecting score ≥ η0n?

1·n∑
t=η0n

Pr[M(X) has score t] ≤
1·n∑

t=η0n

V2α(t/n) · e−εηn

Vα(η0)

...

≤ O(1) · max
η0≤η≤1

{
(ηn)2 ·

V2α(η)

Vα(η0)
· exp(−εηn)

}
≤ β
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Accuracy, Concentration

Theorem (Robust-Private Accuracy Guarantee)

Let X1, ...,Xn ∼ pθ∗ where θ∗ ∈ Θ ⊆ Rd , we have a random θ
drawn by M(X) has ∥θ − θ∗∥ ≤ 2α(η0) given

n ≥ max
η0≤η≤1

d log 2α(η)
α(η0)

+ log(1/β) + O(log ηn)

ηε
.

samples, with probability 1− 2β.
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Accuracy, Concentration

Theorem (Robust-Private Accuracy Guarantee)

Let X1, ...,Xn ∼ pθ∗ where θ∗ ∈ Θ ⊆ Rd , we have a random θ
drawn by M(X) has ∥θ − θ∗∥ ≤ 2α(η0) given

n ≥ max
η0≤η≤1

d log 2α(η)
α(η0)

+ log(1/β) + O(log ηn)

ηε
.

samples, with probability 1− 2β.

Fact: For Gaussians where ∥µ∥2 ≤ R , robust estimation
produces ∥µ̂− µ∥2 ≤ O(c + η) with n = O(d/c2) samples
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Accuracy

Theorem (Private Gaussian Mean Estimation)

Let µ ∈ Rd where ∥µ∥2 ≤ R is unknown. There is an ε-DP
algorithm that takes n i.i.d. samples from N(µ, I ) that with
high probability outputs µ̂ such that ∥µ− µ̂∥ ≤ α where

n = Õ

(
d

α2
+

d

αε
+

d logR

ε

)
standard cost for robustness and cost of privacy

(ε, δ)-DP relaxes R to 1/δ
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Takeaways

Statistical Estimation and Desiderata

Individual privacy preserved in population estimates
Estimation despite strong corruption through robustness

Privacy-preserving algorithms

Randomized exponential mechanism, ‘maximize’ q
privately!

A private algorithm that’s accurate in context

Use some ‘robust backbone’ as q, why does this make
sense?
Prove repeated sampling concentrates close to θ∗
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