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Abstract

In this work, we survey the theoretical analysis of the inverse sensitivity mechanism
and instance optimality proposed by [Asi and Duchi, 2020] and applied in [Hopkins
et al., 2022]. We present an information-theoretic and instance-dependent lower
bound on notions of loss for private estimators and show that inverse sensitiv-
ity mechanisms are indeed optimal. We’ll also study a particularly interesting
application of this mechanism through statistical estimation of Gaussians in high-
dimension.

1 Introduction

As machine learning algorithms become ubiquitous and gain access to increasingly sensitive data, it
seems natural to introduce the desiderata that these algorithms be private. There are several intuitive
interpretations of this requirement, one of the most common being that, while the algorithm learns
something (potentially) useful about the population, it must learn very little about any given individual.
More precisely, the administrator must know no more about any individual at the end of the analysis
than she knew at the beginning. The formalization of these requirements compares the output of the
algorithm on two possible datasets with Hamming distance 1 (i.e. differing on exactly one member)
and stipulates that the outcomes must be similar.

Definition 1 (Differential Privacy, [Dwork et al., 2006]). Consider an algorithm A : Xn → T , which
operates over datasets of size n of members of X and outputs a result in T 1. If, for every x, y ∈ Xn

such that d(x, y) = 1, and every subset O ⊆ T ,

Pr[A(x) ∈ O] ≤ eε Pr[A(y) ∈ O] + δ

for some ε ≥ 0, δ ∈ [0, 1], we say A is (ε, δ)-differentially private.

Algorithms that satisfy this worst-case definition of differential privacy admit many strong
properties, shown in post-processing and composability lemmas, that we’d expect a truly private
method to satisfy.

Lemma 2 (Post-Processing, [Dwork et al., 2006]). Let A : X → T be a (ε, δ)-d.p. algorithm, and
f : T → T ′ be any randomized mapping. Then, f ◦A : X → T ′ is (ε, δ)-d.p.

Lemma 3 (Composability, [Dwork et al., 2006]). Suppose A1 : X → T1 and A2 : X → T2 are
(ε1, 0) and (ε2, 0) d.p. respectively. Then, A3 : X → T1 × T2 given by A3(x) = (A1(x), A2(x)) is
(ε1 + ε2, 0)-d.p.

1For the purposes of this review, we’ll assume (T , ∥·∥) is a well-defined metric space. Note that (Xn, d) is
also a metric space over n-length strings.
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1.1 Folklore Differential Privacy Constructions

Over the years, researchers have found increasingly clever ways to construct differential privacy in
various situations, of which we’ll present just three. The first two, privacy through Laplacian noise
and exponential mechanism are simple in statement and proof, but lay the groundwork for many more
modern ideas. The third, smooth sensitivity, is a canonical example of ’optimization’, which strictly
improves on an earlier construction, but exhibits a more complicated construction.
Definition 4 (Privacy by Noise, [Dwork et al., 2006]). Given any query function f : X → Rk,
calculate its global sensitivity:

GFf ≜ sup
x,x′:d(x,x′)=1

∥f(x′)− f(x)∥ . (1)

The Laplacian mechanism, defined as

MLap(x, f(·), ε) = f(x) +
GFf

ε
Lap(1).2

is (ε, 0)-d.p.

Intuitively, adding noise to the output of f(x) obscures peculiarities that an adversary could
attack. Additionally, adding noise proportionally to the global sensitivity makes sense if we think
about sensitivity as a measure of discrimination abilities (how far apart can we send two similar points
x, x′). However, there is a very clear degradation of information associated with adding noise, which
causes stronger privacy guarantees to be put at odds with accuracy. The exponential mechanism
avoids adding noise:
Definition 5 (Exponential Mechanism, [McSherry and Talwar, 2007]). Let h : Xn × T → R+ be
1-Lipschitz with respect to Hamming distance on X (that is, |h(x, t) − h(x′, t)| ≤ 1 for adjacent
x, x′). Let µ be some measure over T . Then, the mechanism Lexp which samples X ∼ π constructed
as

dπ(t) =
exp(−h(x, t)ε/2) · dµ(t)∫

s∈T exp(−h(x, s)ε/2) · dµ(s)
satisfies ε-d.p.

Although instances of the exponential mechanism tend to be computationally intractable (think
about Lexp constructing a distribution π and then randomly sampling from it), they are useful in
‘private optimization’. It can often be shown that we select r.v.’s from π that minimize h with high
probability while remaining differentially private. We’ll see a particularly strong application of this
in Section 2.6.

But can we do better? Perhaps we feel that the noise added in Definition 4 is too extreme, and
should be tailored to our dataset x. A notion for this is local sensitivity, calculated as LSf (x) ≜
supx′:d(x,x′)=1 ∥f(x′)− f(x)∥. However, just calculating the local sensitivity of a given sample x
cannot be done privately (intuitively, we reveal information about x revealing how different it is from
its neighbors x′). So, we might seek a ’smoothened’ upper bound S(x) ≥ LSf (x) that is β-d.p. It is
shown in [Nissim et al., 2007] that the smallest such S is defined as follows.
Definition 6 (Smooth Sensitivity, [Nissim et al., 2007]). For a function f , the β-smooth sensitivity is

S∗
f,β(x) ≜ max

y∈Dn
LSf (x) exp(−βd(x, y))

As a sanity check, recall that the constant function S(x) = GFf = supx LSf (x) satisfies the
conditions as well, so we have S∗

f,β ≤ GFf as a (conservative) upper-bound, just by construction. It
turns out that a mechanism Msmooth,β(x, f(·), ε) that adds noise according to

Msmooth,β = f(x) +
S∗
f,β

ε/2
Lap(1)

can be shown to be ε-d.p.! Additionally, as we add less noise than the Laplace mechanism, we should
expect less corruption and thus a more accurate result for most x ∈ X .

Is there a limit to how far can we go? Through the rest of this survey, we’ll look into the horizon
of differentially private construction, and touch on the following pertinent research questions:

• Is there an optimal (accuracy) lower-bound that all DP mechanisms obey?
• If there is a limit, what method(s) achieve it? What does it mean to be optimal?

2



2 Survey of Past Works

2.1 Problem Setup

We’ll begin by introducing technical definitions and lemmas to understand statistical optimality in the
context of [Asi and Duchi, 2020]. For a learning problem with ground truth f : X → T , we define a
loss function L : T × T → R+ to judge the responses of some (randomized) learner M . In class,
we extensively studied the (expected) loss of our learner through E [L(M(x), f(x))]. For the sake of
simplicity, almost all results will concern this definition of loss, but we’ll also mention the idea of
local minimax risk

R(x, L,M) ≜ sup
x′∈Xn

inf
M∈M

max
x̃∈{x,x′}

E [L(M(x̃), f(x̃))] . (2)

This construction will allow us to consider a particular class of mechanisms M, such as differen-
tially private and unbiased estimators (Definition 1, 7). Most importantly, it offers us a worst-case
perspective while still being data-dependent (unlike, say GFf ). Some particularly difficult theorems
involving expected loss in [Asi and Duchi, 2020] are demonstrated using minimax risk.

As is in classical statistics, we’ll see that optimal mechanisms are often unbiased.
Definition 7 (Unbiased, Definition 1.4, folklore). A randomized algorithm M : Xn → T is L-
unbiased if, for any x ∈ Xn and t ∈ T , E [L(M(x), f(x))] ≤ E [L(M(x), t)]. That is, the algorithm
outperforms any constant predictor in the expected loss paradigm.

Intuitively, Definition 7 demands that M outperform any constant predictor in the output space
for all datasets. If we take L(s, t) = (s− t)2, for example, we recover the E[M(x)] = f(x), which
may be familiar from classical notions.

With these definitions in place, we can set up two notions of optimality:
Definition 8 (Local minimax optimal, Definition 1.3, [Asi and Duchi, 2020]). A mechanism M :
Xn → T is local minimax optimal w.r.t. M if there exists C < ∞ such that

E [L(M(x), f(x))] ≤ C · R(x, L,M).

Definition 9 (Local unbiased-private optimal, Definition 1.5, [Asi and Duchi, 2020]). Let C ≥ 1. A
randomized mechanism M is C-optimal against L-unbiased mechanisms if M is Cε-d.p., and for
any ε-d.p., L-unbiased mechanism Munb : Xn → T , and dataset x ∈ Xn

E [L(M(x), f(x))] ≤ E [L(Munb(x), f(x))]

So, we might expect a competitive mechanism to be, say ‘local minimax optimal’, or at least
competitive with unbiased opponents by being C-optimal against L-unbiased mechanisms.

2.1.1 Cramér-Rao Lower Bound

To motivate the discussion that follows, we review a parallel information lower-bound from classical
statistics that demonstrates optimality of a parameter estimate. Consider an estimator θ̂ which aims to
estimate quantity θ0 given access to a finite sample set. The mean-squared error can be decomposed,

MSE(θ̂) = var(θ̂) + (E(θ̂ − θ0))
2,

where the first term is known as variance and the second as bias. If we only consider unbiased
estimators, the efficiency of θ̂ is determined entirely through its variance – the smaller this quantity
the better θ̂ does in terms of error.
Lemma 10 (Cramér-Rao). Let X1, ..., Xn be i.i.d. with density function f(x|θ0), and θ̂ be an
unbiased estimate of θ0. Then,

var(θ̂) ≥ 1

nI(θ0)

where I is the Fisher information.

So, from a statistical sense, it makes sense to call θ̂ information-theoretically optimal if it tightly
satisfies this lower-bound; var(θ̂) = 1/nI(θ).
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2.2 Loss Lower Bounds in Cramér-Rao fashion

We’ll introduce this section with some instance-dependent quantities. One that the reader might
already be familiar with is inverse local sensitivity, which essentially reverses the phrasing of local
sensitivity.
Definition 11 (Inverse (local) sensitivity, folklore). Consider f : Xn → T and a sampled dataset x.
The inverse local sensitivity of x with respect to label t ∈ T is

lenf (x; t) = inf
x′

{d(x, x′)|f(x′) = t} , (3)

First, it is easy to see that inverse sensitivity is instance (or data) dependent due to its construction.
Informally, lenf (x; t) measures the corruption required of a true dataset x such that a query f returns
value t. So, values of t that characterize f(x) better will tend to have smaller lenf (x; t) than more
obscure values. A slightly deeper analysis notes that, if x is in a stable space (i.e. datasets close in
Hamming distance share the same outcome under f ), then we have lenf (x; t) is large, so this metric
detects how robust (or inversely sensitive) f is to changes around x.

With these observations in mind, we are ready to show our first instance-dependent risk lower-
bound for private/unbiased estimators. We start with the reduced learning setting where the ground
truth f : Xn → T has a finite output |T | < ∞ and we are judged by 0-1 loss ℓ0−1(s, t) = 1(s ̸= t).

Theorem 12 (Lower bounds for 0-1 loss3, [Asi and Duchi, 2020]). If M is ε-d.p., then

inf
x∈Xn

P(M(x) = f(x)) ≤ inf
x∈Xn

1∑
t∈T e−lenf (x;t)ε

.

Furthermore, if M is also ℓ0−1-unbiased, then

P(M(x) = f(x)) ≤ 1∑
t∈T e−2lenf (x;t)ε

Even in this toy case, considering just a finite output space and 0-1 loss, we can see why global
methods might be loose. As Theorem 12 presents, we can upper-bound agreements between M and f
(thus lower-bound loss) entirely using the instance-dependent expression lenf (x; t). Unsurprisingly,
the losses of unbiased, differentially private mechanisms built using less sensitive locations x ∈ Xn

have tighter lower-bounds, which would not have been caught by global measures.

The instance-dependent bounds of Theorem 12 can be expanded to a more general loss setting
where L(s, t) = ℓ(∥s− t∥), for some non-decreasing ℓ : R+ → R+, but will require the use of a
more generic instance-dependent quantity, dubbed local modulus of continuity.
Definition 13 (Local Modulus of Continuity, [Asi and Duchi, 2020]). The local modulus of continuity
of f : Xn → T at x ∈ Xn is

ωf (x; k) = sup
x′∈Xn

{∥f(x)− f(x′)∥ : d(x, x′) ≤ k}

Note that ωf is instance-dependent (by construction) and is always upper-bounded by the global
sensitivity, GFf = supx∈X ωf (x; 1). It captures a similar idea as our analysis of inverse local
sensitivity (Definition 11) in that it expresses some judgement of stability around x; if x is near (in the
metric space (Xn, d)) points of different labels, ωf (x) will tend to be larger and vice versa. Having
introduced this quantity, we are ready to generalize Theorem 12 to a general loss for our main result.
Theorem 14 (Lower bounds for general loss, [Asi and Duchi, 2020]). If M is ε-d.p., then for any
k ≥ 1

sup
x∈Xn

E[L(M(x), f(x))] ≥ sup
x∈Xn

ℓ(ωf (x; k)/2

ekε + 1
.

Furthermore, if M is also L-unbiased, then

E[L(M(x), f(x))] ≥ ℓ(ωf (x; k)/2)

e2kε + 1
.

3Note that these are indeed expected loss lower bounds because E[L(M(x), f(x))] = 1−P(M(x) = f(x))
in the 0-1 loss setting
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Informally, Theorem 14 demonstrates an instance-dependent limit for the performance of an
unbiased estimator satisfying notions of privacy. In the realm of expected loss analysis, we can not
expect to (consistently) perform under a certain threshold. As the authors note, this is reminiscent of
the Cramer-Rao bound in classical statistics, which lower-bound the variance of an unbiased estimator
using Fisher-information (10). The following result shows that this is tight.
Theorem 15 (Theorem 14 is optimal, T = R case). Consider the case of f : Xn → R and let
L(s, t) = ℓ(|s− t|) where ℓ : R+ → R+ is non-decreasing. Suppose a mechanism M is ε-d.p. and,
at some point x ∈ Xn achieves

E[ℓ(|M(x)− f(x)|)] ≤ γℓ(ωf (x, 1/ε)/2)

where γ ≤ 1

2ε
, then there exists a sample x′ ∈ Xn with d(x, x′) ≤ log(1/2γ)

2ε
with

E[ℓ(|M(x′)− f(x′)|))] ≥ 1

4
ℓ

(
1

4
ωf

(
x′;

log(1/2γ)

2ε

))
Though the tools needed to prove Theorem 15 involve minimax risk, which we have yet to

discuss, it amounts to a stronger guarantee of Theorem 15. Considering the toy case where our output
space T is the real numbers, and our loss function corresponds to | · |, we cannot consistently beat the
threshold from Theorem 14 up to constants on an arbitrary point x, since we will pay dearly in our
prediction for a neighboring point x′.

For the final statistical result, we’ll show that minimax risk itself can be strongly bounded by
instance dependent quantities.
Theorem 16 (Local-minimax bounds). If Mε is the collection of ε-d.p. private mechanisms, then

1

4
max
k≤n

{ℓ(ωf (x; k) exp(−kε)} ≤ R(x, L,Mε) ≤ max
k≤n

{
1

1 + exp(kε/2)
ℓ(ωf (x; k))

}
.

It follows R(x, L,Mε) ≍ ℓ (ωf (x; 1/ε)).

So, for the class of ε-dp mechanisms, minimax risk is described up to constants just by the local
modulus of continuity. When this result is paired with previous theorems about expected loss, it
becomes easy to show C-optimality through relation to ℓ(ωf (x; 1/ε)), which is precisely our goal.

2.3 Inverse-Sensitivity Mechanism is Instance-optimal

In this section, we’ll introduce a particularly interesting instantiation of the exponential mechanism
which involves inverse sensitivity (Definition 5, 11). Why should we expect anything promising
from such an instantiation? Recall from the discussion surrounding Definition 5 that the distribution
the exponential mechanism samples from strongly prefers small h values, and that inverse local
sensitivity gives stable labels in T small values as well. Additionally, neither method violates privacy
in calculation or result. So, we might expect a mechanism that combines these insights to be both
differentially private and accurate, perhaps pushing tightness on bounds in Section 2.3.
Definition 17 (Inverse-sensitivity mechanism, folklore, [Asi and Duchi, 2020]). Note that lenf (x; t)
is 1-Lipschitz w.r.t. Hamming distance on X . 4 Thus, we may let h(x, t) = lenf (x; t) as

dπ(t) =
exp(−f(x; t)ε/2) · dµ(t)∫

s∈T exp(−f(x; t)ε/2) · dµ(s)

As we’ve done before, we begin by studying the reduced case of Mdisc where T is discrete, and
we use 0-1 loss. The following lemma follows by construction.
Lemma 18. Consider an initialization Mdisc of Definition 11 with discrete output |T | < ∞ and loss
L(s, t) = 1(s ̸= t). Then,

P(Mdisc(x) = f(x)) =
1∑

t∈T e−lenf (x;t)ε/2

4Use triangle inequality on adjacent x, x′
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Recalling the statement of Theorem 12, we see that the exponential mechanism matches the
upper-bound for accuracy (thus, the lower-bound for loss). So, it seems promising that the general
case where we allow T to be unbounded and use a generic loss might meet the statistically optimal
bounds of Theorem 14, and be optimal in the sense of Definitions 8, 9. Indeed this is the case:
Theorem 19 (Optimality, Corollary 3.3, [Asi and Duchi, 2020]). A continuous form of the exponential
mechanism is C = O(log n) optimal with respect to both minimax risk, and unbiased estimators.

The fact that C is sample dependent rather than some constant may be an underwhelming result,
however, it is shown that this can be tightened in many standard cases. In particular, [Asi and Duchi,
2020] defines and studies a class of sample-monotone query functions f where f(x) ≤ s ≤ t or
t ≤ s ≤ f(x) implies lenf (x; s) ≤ lenf (x; t). Intuitively, this may be a resonable assumption to
work under as it is ‘easier’ to reach s than t via swapping if t is further away (revisit 11). In this
case, it is shown that inverse local sensitivity instantiation is usually O(1)-optimal and at worst
O(log log n)-optimal, an improvement on Theorem 19.

2.4 Application to Parameter Estimation

In this section, we’ll explore a particular instantiation of the inverse sensitivity mechanism explored
extensively in [Hopkins et al., 2022] for parameter estimation.
Problem 20 ((Robust) Parameter Estimation, [Hopkins et al., 2022]). Let Pθ be a class of distributions
parameterized by some parameter θ ∈ Θ. A parameter estimation algorithm A : Xn → Θ has
access to n i.i.d. samples x ∈ Xn from Pθ∗ and aims to recover θ∗. A robust parameter estimation
algorithm Ar is expected to perform the same task, but is instead given x′, which is any dataset that
satisfies d(x′, x) ≤ ηn (also called an η-(strong) corruption).

Parameter estimation and its robust analogue are difficult and full research subjects in their
own right, with known information-theoretic lower bounds. However, in the theme of this survey,
we’re most interested in enforcing privacy. It turns out that this is possible using tools we already
understand in the inverse-sensitivity mechanism (17) and just rudimentary knowledge of a robust
estimator, which we will now introduce.
Definition 21 (Robust Estimator). Let Ar : Xn → Θ be a robust estimator for distribution Pθ. When
evaluated on input x ∈ Xn, where x is an η-corruption of data from Pθ, we have ∥Ar(x)− θ∥ ≤
α(η) with high probability, where α : R+ → R+ is nondecreasing.

Using Ar we can build a score function similar to inverse local sensitivity (11).
Definition 22 (Scoring, 11). Consider an inverse local sensitivity construction as

sx(θ̃) = min
x′

(
d(x, x′) : ∥Ar(x

′)− θ̃∥ ≤ α(η0)
)

for some predetermined value α(η0).

We take a moment to reflect on this construction, starting with the set S0 of parameters θ̃ of
value sx(θ̃) = 0. These proposed labels must lie within a radius of α(η0) of the robust estimate
Ar(x

′), since we need not change any samples x to meet the condition. If we condition on the robust
estimator working, we have that the true parameter θ∗ ∈ S0. Now, consider a candidate label θ̃ point
of score ηn, η < 1. For the x′ chosen, we of course have ∥Ar(x

′)− θ̃∥ ≤ α(η0), but we also have
that ∥θ∗ − Ar(x

′)∥ ≤ α(η) if we think of x′ as an η-corruption of x. Putting these together, we
have that ∥θ∗ − θ̃∥ ≤ 2α(η0) when η ≤ η0, and ∥θ∗ − θ̃∥ ≤ 2α(η) otherwise, or, informally, lower
scores are better. Following from our discussions around the Definition 5, an exponential sampling
mechanism seems to be an ideal candidate, as

Adp(x = θ) =
exp(−sx(θ) · ε/2)∫

θ′∈Θ
exp(−sx(θ′) · ε/2)dθ′

. (4)

It can be shown that the samples Adp concentrate around a ball of radius 2α(η0) from θ∗ (i.e., have
score at most η0), so we get the following strong lemma:
Lemma 23 (Lemma 2.1, Hopkins et al. [2022]). Suppose a dataset X1, ..., Xn ∼ pθ∗ , where the
parameter vector θ∗ ∈ Θ ⊂ Rd. For any threshold η0 ∈ [0, 1], a random θ drawn using Adp has
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∥θ − θ∗∥ ≤ 2α(η0) with probability at least 1− 2β if

n ≥ max
η0≤η≤1

d log 2α(η)
α(η0)

+ log(1/β) +O(log ηn)

ηε
.

Additionally, the mechanism Adp is ε-d.p.5

A particularly interesting special case is where pθ∗ is the class of Guassians of bounded mean
and identity covariance matrix, with the ℓ2 metric. In this setting, robust estimators have been studied
extensively, and known to produce estimates within α given Õ(d/α2) samples. Using the black-box
reduction given by Adp, we can add privacy to this estimate at some complexity cost:
Corollary 24 (Private Mean Estimation, Guassian, [Hopkins et al., 2022]). Let 0 < α, β, ε < 1 and
R > 0. Let µ ∈ Rd where ∥µ∥2 ≤ R is to be estimated. There is an ε-dp mechanism that takes n
i.i.d. samples from N(µ, Id) and returns µ̂ that satisfies ∥µ− µ̂∥2 ≤ α with high probability, given

n = Õ

(
d

α2
+

d

αε
+

d logR

ε

)
As a final connection to the research question, we find that adding privacy onto a robust estimator

via black-box reduction adds complexity Õ(d/αε+ d logR/ε), recalling that Õ(d/α2) is required
just by constuction of Ar. Since Adp is an inverse sensitivity mechanism (and also defined over a
sample-monotone space), we have by [Asi and Duchi, 2020] that this is an optimal cost of privacy.
The dependence on R is worrying but can be shown to be necessary in the pure-dp setting; if we
allow approximate privacy, it relaxes to 1/δ. We can also allow for non-identity covariance matrices
as I ≼ Σ ≼ K · I , which introduces a logK dependency.

3 Commentary on Future Work

Since our results are so overwhelmingly theoretical, most of our suggested explorations will be in
this direction, divided into statistical and algorithmic categories.

3.1 Theory/Statistical Interests

A key statistical interest is characterizing what regimes correspond with which C-optimalities.
We’ve discussed the unconstrained continuous case and the sample-monotone case, seeing and
improvement from C = O(log n) to C = O(log log n), but we’d personally really like to understand
the assumptions necessary to have C = O(1). This would imply that the optimality of inverse
sensitivity is as tight as possible, having no dependence on sample complexity.

A possible idea in this direction would be to consider a special case of sample monotonicity
where lenf (x; s) ≤ h(s, t)lenf (x; t) holds for s in between f(x) and t. This approach is inspired by
the change from global sensitivity to smoothened sensitivity, where we add some instance-dependent
condition described by h(s, t). (Maybe, we could have h(s, t) = e|s−t| in the case of T = R to get a
‘differentially private’ idea).

Another interesting direction to explore would be involving privacy in real-world application,
such as exposure to noise (taking inspiration from [Hopkins et al., 2022]). For example, it’s not
difficult to show that the inverse sensitivity mechanism of Adp performs as well under noise (up to
constant factors) as it does in the noiseless regime, as robustness is built in. But, how does a generic
ε-dp mechanism (Mε) measure up against unbiased algorithms in this setting (again, with respect to
C-optimality). It seems intuitive that privacy should offer built-in protections against noise, since our
mechanisms are conditioned not too give any datapoint too much weight. A result in this area would
go towards showing privacy implies robustness to some extent.

3.2 Algorithmic Interests

A main algorithmic exploration is creating a polytime implementation of the exponential mechanism.
As it is written theoretically, we must request an infinite number of queries to construct the distribution

5Note that |sx(θ̃)− sx′(θ̃)| ≤ 1 for any d(x, x′) ≤ 1.
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and then sample at random from this, repeatedly – this is clearly intractable. In the ’General Sampling
Algorithm’, [Hopkins et al., 2022] presents a partial solution for this in the Adp case. From what we
can understand, this involves a reduction from the Sum-of-Squares used to compute robust estimates,
and cannot be generalized beyond the black-box reduction setting. Though this is likely impossible
to be established generally, it is still interesting to study, perhaps for other robust algorithms.

A final remark would be to study algorithms beyond the exponential mechanism initialization.
Since this mechanism still has interesting properties to be studied (as elaborated in other points) and is
by far the easiest to analyze mathematically, it may be productive to explore other DP algorithms with
a better track record of tractability. For example, even if the noise-based methods discussed earlier
have a worse constant C, their gains in computation may be great enough to make them worthwhile.
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