
Computational Hardness of Learning

Anish Jayant

Fall 2024

The disciplines of cryptography and learning theory each characterize the space spanned by
computational tractability and information-theoretic limits using largely distinct tools. Funda-
mental notions in public-key cryptography and pseudorandomness rely on simple mathemat-
ical constructs that are assumed to be difficult to invert with limited computational resources,
despite being easily invertible mathematically. This manifests in the form of (length-preserving)
one-way functions:

Definition 0.1 (One-wayness). A function f : {0, 1}n → {0, 1}n is one-way if it is computable in
poly-time and, for any probabilistic polynomial time algorithm A and polynomial p,

Pr[f (A(f (x))) = f (x)] ≤ 1
p(n)

.

where x is drawn u.a.r from {0, 1}n.

This definition captures average-case hardness; instead of showing ∃x ∈ {0, 1}n for which A
inverts f (x) poorly, like in standard NP reductions, it shows a result ∀x, without needing patho-
logical construction. It follows that the existence of an f satisfying Definition 0.1 is one of the
strongest conjectures in computer science, directly implying P ̸= NP and even RP ̸= NP. Fol-
lowing the construction in Kearns and Vazirani (1994), we show that the one-way assumption in
conjunction with learning theory shows that many computational models (like the polynomial-
size Boolean circuits, Theorem 3.2) are “inherently unpredictable.” At a high level, this means
that any algorithm A with limited computational resource cannot simulate even a polynomial-
size Boolean circuit! This result can be further strengthened to log-depth, polynomial size circuits
and even neural networks, though just slightly out of the scope of this report. We conclude by
mentioning some other popular perspectives on the limitations of learning.

1 Learnability in Classification

Like statistics inverts data-generating processes by reasoning about distributions (e.g. parameter
estimation), learning theory reverses decisions by thinking about explanatory function classes.
The foundational work of Valiant (1984) motivates this perspective as understanding a set of
behaviors: whether a gene contributes to a disease, an ad is clicked, or a stock rises or falls.

In (binary classification) learning terminology, a function class F ⊂ {0, 1}X is called an induc-
tive hypothesis and typically represents some prior information about the data-label relationship.

1

In proper learning, the setup we start with here, the learning procedure must output some f̂ ∈ F
using access to m samples (xi, yi) ∈ X × {0, 1} drawn i.i.d. from some distribution D such that

Pr
x∼D

[f̂ (x) ̸= f ∗(x)]− inf
f∈F

Pr
x∼D

[f (x) ̸= f ∗(x)] m→∞−→ 0, (1)

where f ∗(x) = y for all x ∈ X . In words, it must select a classifier f̂ from F using only our
limited view of m such that it performs as well the best classifier in F asymptotically. We also
invoke the realizable assumption, which ensures f ∗ ∈ F , making the second term in Eq. (1) as 0.

Notice that the answer to this question is distribution independent, meaning that we need not
assume the structure of D. Though this seems too vague at first, we’ll see that this notion is ac-
tually the most natural and fundamental. To start, we consider the simplest non-trivial learning
problem:

Example 1.1 (Learning Thresholds). Consider the function class F = {1(x ≥ c)|c ∈ R} of left-
thresholds. We receive a sample set S = {(xi, yi)}m

i=1 drawn according to some distribution over
X = R and labeled such that yi = f ∗(xi) = 1(xi ≥ c∗), for some c∗ ∈ R.

The paradigm of empirical risk minimization observes that f ∗ has no error on S, so we should
narrow our search of f̂S only to members of F that satisfy this as well. Clearly, it’s possible
(though intractable) to find such a hypothesis via a brute-force search, but we can be more tactful
using structural properties of F . Let S0 be the set of x-values in S that earned label 0, and S1 be
the remainder; for any (x0, x1) ∈ S0 × S1 we must have x0 < x1. Thus, if we let c = min S1, then
f̂ (x) = 1(x ≥ c) classifies S perfectly.

It remains to analyze how f̂ performs relative to the true distribution. Note that c > c∗ since
c ≤ c∗ implies some x1 ∈ S1 such that x1 ≤ c∗, a contradiction under realizability. Thus, if f̂
incurs error larger than ϵ > 0, it follows

Pr
x∼D

[f̂ (x) ̸= f ∗(x)] = Pr
x∼D

[x ∈ [c∗, c)] > ϵ.

Since c = min S1 it follows that none of the m samples in S came from [c∗, c), an event with
probability at most (1 − ϵ)m ≤ e−ϵm ≤ δ using the independence of draws. Therefore, if m ≥
log(1/δ)/ϵ, it follows that Prx∼D(f̂ (x) ̸= f ∗(x)) ≤ ϵ with probability 1 − δ. The language of
this result indeed shows the class of thresholds is properly learnable:

Definition 1.2 (PAC Learning). A class F is learnable (under representation H) if, for any f ∗ ∈ F ,
there exists some function mF : (0, 1)2 → N and learning algorithm given m ≥ mF (ϵ, δ) samples
drawn i.i.d from D which returns a hypothesis h ∈ H such that Prx∼D[h(x) ̸= f ∗(x)] ≤ ϵ with
probability at least 1 − δ. When H = F , we say F is properly learnable.

Since its introduction, Definition 1.2 has been shown to be satisfied by a variety of natural hy-
pothesis classes like halfspaces, 3-CNFs, and even neural networks, in addition to the class of
thresholds (Example 1.1). In addition, it is satisfied by all finite classes (i.e., whenever |F | <
∞). Thus, as most constructs in cryptography are grounded in finite groups, these encryption
schemes are learnable with modest sample complexity.

However, our discussion so far has purely information-theoretic, failing to capture the com-
putational complexity of learning. Though our idea for f̂S in Example 1.1 can be implemented in
O(mF) = O (log(1/δ)/ϵ), we heavily exploited the problem’s geometric structure, which may

2

not be available in general. This motivates the following definition of efficient learning, which
strengthens the prior notion with a limitation on runtime (and implicitly, sample complexity).

Definition 1.3. A class F is efficiently learnable (under representation H) if all conditions in Defi-
nition 1.2 hold for a learning algorithm that runs in O(p(log(1/δ), 1/ϵ)) for some polynomial p.
Since reading a sample takes time, it follows immediately that the sample complexity need also
be polynomial in log(1/δ) and 1/ϵ.

Interestingly, efficient learnability also depends on how we frame the learning problem, a
phenomenon called representation-dependent hardness. For example, though 3-CNFs and 3-DNFs
represent the same set of Boolean functions, only 3-CNFs are efficiently learnable wheras learn-
ing 3-DNFs happens to be NP-complete, via 3-Coloring Kearns et al. (1987). Note that this is
not a contradiction, as the conversion from a 3-DNF to 3-CNF may take exponential time. Thus,
the impossibility of efficiently learning 3-DNFs can be sidestepped through improper learning,
specifically by returning a 3-CNF formula instead. In the remainder of this report, we show that
one-way functions imply an even stronger result, whose subtlety we can now appreciate: a class
that’s impossible to efficiently learn regardless of representation.

2 Discrete Cube Root Assumption

We begin by introducing a special case of RSA encryption, where the public key (e, N) has fixed
exponent e = 3 which doesn’t divide ϕ(N) = (p − 1)(q − 1). Recall the RSA encryption func-
tion fN behaves as x 7→ x3 (mod N) and is a permutation of Z∗

N. To see this, we produce its
inverse function f−1

N : Z∗
N → Z∗

N, which show a bijection. Recall that there exists d that 3d ≡ 1
(mod ϕ(N)) since 3 ∤ ϕ(N). Thus,

fN(x)d ≡ (x3)d ≡ x3d ≡ x1 (mod N)

using Euler’s xϕ(N) ≡ 1 (mod N). Therefore, the function x 7→ xd (mod N) behaves as a cube
root modulo-N. The security of RSA lies with finding d, which is suspected to be at least as hard
as factoring (i.e., computing ϕ(N)) in average-case.

Definition 2.1 (Discrete cube root). Let N = pq be an n-digit number such that 3 ∤ ϕ(N), and p, q
be primes of similar length. Let fN : Z∗

N → Z∗
N behave as x 7→ x3 (mod N) and the discrete cube

root modulo-N be f−1
N (y) = yd.

Finally, we are poised to present the main hardness assumption, in line with Definition 0.1,
which posits fN(x) is hard to invert on average:

Assumption 2.2 (DCRA). Consider uniform distribution over pairs (p, q) such that pq is n-bits
and 3 ∤ (p − 1)(q − 1). Let N = pq be selected via this distribution and x ∈ Z∗

N be selected
uniformly at random. Then, for all algorithms A ∈ PPT and all polynomials p(·),

Pr[fN(A(fN(x))) = fN(x)] ≤ 1
p(n)

where the randomness is over N, x, and A.

3

With Assumption 2.2 in hand, we hope that binarizing f−1
N will produce a similar result

in the framework we’ve already established. But, how can we reduce permutations of Z∗
N to

classification learning? For a fixed N, a simple trick is to collect the i-th binary digit, f−1
N,i(x).

Indeed,

f−1
N = f−1

N,1∥ f−1
N,2∥ · · · ∥ f−1

N,n

where ∥ denotes concatenation. So, if we have all f−1
N,i , we can easily recover f−1

N and vice versa.
Additionally, this binarization naturally generates hypothesis class CN = { f−1

N,i |i ∈ [n]} where
CN ⊂ {0, 1}Z∗

N is clearly finite in size. Putting this together for (finitely many) satisfactory N, we
have C =

⋃
CN models all possible discrete cube root digit functions! Thus it follows from finite

classes being learnable that C is indeed learnable.

Theorem 2.3. Under DCRA, C is not learnable efficiently using any hypothesis class H.

Proof. Suppose C is learnable efficiently with m samples. We show this implies fN may be in-
verted for any N with good probability, which immediately contradicts the average-case notion
in Assumption 2.2. We generate xi ∈ Z∗

N uniformly at random and apply the encryption func-
tion yi = fN(xi), and rearrange them as (yi, xi) = (yi, f−1

N (yi)). By binarizing as described above
into we achieve dataset

(y1, f−1
N,1(y1)) (y1, f−1

N,2(y1)) · · · (y1, f−1
N,n(y1))

(y2, f−1
N,1(y2)) (y2, f−1

N,2(y2)) · · · (y2, f−1
N,n(y2))

...
...

(ym, f−1
N,1(ym)) (ym, f−1

N,2(ym)) · · · (ym, f−1
N,n(ym))

where each sample occupies a row and each digit inverse a column. We can simultaneously
(and independently!) run n subroutines of the purported efficient digit learning algorithm with
parameter (ϵ, δ) = (1/n2, 1/n2) and retrieve outputs (h1, h2, ..., hn) ∈ Hn. If the learners are
successful, we have that for all i ∈ [n], hi differs from f−1

N,i on at most 1/n2 of Z∗
N. Let this

“good” event be G, where Pr[G] = (1 − δ)n ≥ 1 − δn = 1 − 1/n. A union bound brings

Pr[h1∥h2∥ · · · ∥hn ̸= f−1
N |G] ≤

n

∑
i=1

Pr[hi ̸= f−1
N,i |G] ≤ n · 1/n2 = 1/n,

thus,

Pr[A(fN(x)) = x] = Pr[A(fN(x)) = x|G]Pr[G] + Pr[A(fN(x)) = x|Gc]Pr[Gc]

≥
(

1 − 1
n

)2

+ 0 = 1 − 2
n
+

1
n2 ≥ 1 − 2/n.

Therefore, A agrees with f−1
N on all but 2/n of Z∗

N, contradicting DCRA.

4

3 Boolean Circuits Can’t Be Efficiently Learned

Despite the tedious and pedantic construction of C in the previous section, the result of The-
orem 2.3 is quite fundamental! In fact, it implies any computational model that is capable of
iterative multiplication, multiplying several n-digit numbers in some predetermined order, is im-
possible to learn efficiently. We study an instructive computational model which satisfies this
property.

A Boolean circuit is a directed-acyclic graph which computes a function f : {0, 1}n → {0, 1},
where its size is measured by the number of vertices. Each vertex has indegree 0, 1, or 2. In
general, nodes may have arbitrary outdegree, except for a single vertex of outdegree 0, which
is the desginated output vertex. Nodes which have indegree 0 are labeled by an input variable,
those with indegree 1 are labeled with unary operator ¬, and those with indegree 2 are labeled
with either ∨,∧. In such a manner, one can compute the Boolean circuit’s output on (x1, x2, ..., xn)
by placing these values on vertices with 0 indegrees and resolving the value of vertices next in a
topological sort. By examining our construction, one can see that Boolean formulae, which use
only logical operators and “(” and “)” to denote order, are precisely Boolean circuits with the
graph structure of a tree. Conversely, a Boolean circuit may be transferred to a Boolean formula,
but may suffer a blow-up in terms of size. The special property of circuits, which we exploit to
show the following lemma, is that they can repeat computation efficiently, like a “subroutine” in
programming.

Lemma 3.1. The multiplication of two O(n) digit numbers can be computed by a circuit whose
size is polynomial in n.

Simply consider the (unoptimized) way of multiplying x1, x2 each of n bits via the “grade-
school method.” By multiplying x1 · x2i · 2i−1 for i ∈ [n] and then adding the results, we reduce
multiplication into the addition of n-many numbers of size at most 2n, each of which is clearly
doable with a circuit of O(n) vertices. Note that the each multiplication itself takes O(n) as
well. As we execute polynomially many circuit subroutines each requiring polynomial size, the
overall computation is indeed computable by a circuit whose size is polynomial in n.

Theorem 3.2. Under DCRA, the class of Boolean circuits of polynomial size is not efficiently
learnable, regardless of representation.

To show the result, we argue that f−1
N , where N is n bits and defined as before, can be com-

puted by a polynomial-size Boolean circuit. This immediately implies CN can be computed by
such a Boolean circuit and thus Theorem 3.2 follows from Theorem 2.3 by reduction. Recall that
f−1
N is simply y 7→ yd where d can be determined from just ϕ(N) (using Extended GCD), so

simply constructing a polynomial size circuit that computes y 7→ yd, where d is “hard-coded,”
suffices.

Note that approaching this computation head-on is too much, as d may be O(2n) requiring
exponentially many iterated multiplications. However, we can speed this up by first computing
a “basis” for yd,

S = {1, y (mod N), y2 (mod N), y4 (mod N), ..., y2k
(mod N)},

where k = ⌊log d⌋. Note that construction S uses only O(log d) multiplications and can be

5

used to compute yd using binary expansion d = dkdk−1 · · · d0 as yd = ∑k
i=0 S

di
i , again using

O(log d) multiplications. By noting log d ≤ n and Lemma 3.1, the protocol outlined in this proof
is computable with a circuit of polynomial size.

4 Parting Shots

In this report, we present an important result in computational learning theory informed by the
discrete cube-root assumption (2.2) from cryptography. Along the way, we touch on proper and
improper learning, highlighting the role of representation in learning-related hardness results. We
show that for the fundamental computational model of polynomial-size Boolean circuits is impos-
sible to efficiently learn regardless of representation – a result in representation-independent hard-
ness. In fact, exposing the limitations of learning is an active and vibrant area in both theoretical
computer science and learning theory. We conclude by pointing out major research directions
related to these lower bounds:

1. (Memory): Note that our definition for “efficient learning” (1.3) only constrains time-
complexity. Indeed, in casual conversation, efficiency is often synonymous with running-
time. But, in many learning (and cryptography!) applications, memory can often be as, if
not more, restrictive. Thinking about memory and samples together (i.e., showing that a
memory-restricted algorithm must use at least some lower bound of samples) is an active
area of learning theory, and has shown sharp characterizations of fundamental tasks, like
learning parities with noise (LPN) and convex optimization Garg et al. (2021); Marsden
et al. (2024).

2. (Communication): In the age of “big data,” the samples used to train learning models often
reside on different machines. The naive solution of sending all data to a central server and
computing a model with full information is often unrealistic – communication becomes the
limiting factor! In fact, the rich field of communication complexity quantifies how many
bits of information must be transferred between machines to compute functions involving
inputs from multiple machines, Rao and Yehudayoff (2020). The works of Braverman et al.
(2016); Dagan and Shamir (2018) extend this idea to canonical learning problems, showing
that limited communication, like memory, means that more samples are needed to learn. In
fact, under some restrictions, communication protocols can be shown to reduce to memory-
bounded streaming algorithms!

3. (Information-theory): Another technique particularly common in unsupervised learning is
to use a reduction to a difficult statistical primitive. For example, using the planted-clique
conjecture of Bollobas and Erdös (1976), one can show statistical impossibility of learning
the existence of some combinatorial structure! In Berthet and Rigollet (2013), for example,
the task of detecting a sparse principal component analysis (PCA) is shown to reduce to
detecting a planted clique, and thus undetectable without enough “signal.”

6

References

Berthet, Q. and Rigollet, P. (2013). Computational lower bounds for sparse pca.

Bollobas, B. and Erdös, P. (1976). Cliques in random graphs. Mathematical Proceedings of the
Cambridge Philosophical Society, 80(3):419–427.

Braverman, M., Garg, A., Ma, T., Nguyen, H. L., and Woodruff, D. P. (2016). Communication
lower bounds for statistical estimation problems via a distributed data processing inequality.

Dagan, Y. and Shamir, O. (2018). Detecting correlations with little memory and communication.

Garg, S., Kothari, P. K., Liu, P., and Raz, R. (2021). Memory-sample lower bounds for learning
parity with noise.

Kearns, M., Li, M., Pitt, L., and Valiant, L. (1987). On the learnability of boolean formulae.
Conference Proceedings of the Annual ACM Symposium on Theory of Computing, pages 285–295.
Copyright: Copyright 2020 Elsevier B.V., All rights reserved.

Kearns, M. and Vazirani, U. (1994). An Introduction to Computational Learning Theory. MIT Press.

Marsden, A., Sharan, V., Sidford, A., and Valiant, G. (2024). Efficient convex optimization re-
quires superlinear memory.

Rao, A. and Yehudayoff, A. (2020). Communication Complexity: and Applications. Cambridge
University Press.

Valiant, L. G. (1984). A theory of the learnable. Commun. ACM, 27(11):1134–1142.

7

	Learnability in Classification
	Discrete Cube Root Assumption
	Boolean Circuits Can't Be Efficiently Learned
	Parting Shots

