
Learning under
Cryptographic Hardness

By: Anish Jayant

Keywords are posted here!

Cryptographic Assumption

Is there an efficient protocol that is hard to break?

Is there a relaxation of security that is hard in poly-time?

[Shannon, 1946] “computer science”

For modern cryptography to be possible…

Definition (One-way function): A poly-time computable 𝑓: 𝒳 → 𝒴 such that for all 𝒜 ∈ 𝑃𝑃𝑇,

Pr[𝑓 𝒜 𝑓 𝑥 = 𝑓 𝑥 <
1

𝑝𝑜𝑙𝑦(𝑥)

Perfect secrecy, one-way function

Throughout the talk, we assume one-way functions exist ⇒ 𝑃 ≠ 𝑁𝑃, 𝑅𝑃 ≠ 𝑁𝑃

Cryptographic Assumption
For modern cryptography to be possible…

Definition (One-way function): A poly-time computable 𝑓: 𝒳 → 𝒴 such that for all 𝒜 ∈ 𝑃𝑃𝑇,

Pr [𝑓 𝒜 𝑓 𝑥 = 𝑓 𝑥 <
1

𝑝𝑜𝑙𝑦(𝑥)

implies robustness to interactive attacker! (think about public-key…)

Alice
𝑥 ∼ 𝒰(𝒳)

HackerHas access
to one-way 𝑓

Has access to
any 𝒜 ∈ 𝑃𝑃𝑇

Views cipher
requests data

Labels data
𝑛 = 𝑝𝑜𝑙𝑦(𝑥)

Tries to guess
a pre-image

Output grade
𝑓 𝑥 = 𝑓(ො𝑥)

Runs 𝒜(𝑓 𝑥 |𝑥𝑖, 𝑓(𝑥𝑖))

One-way function, communication protocol

repeat 𝑛 times

Cryptographic Assumption
For modern cryptography to be possible…

Definition (One-way function): A poly-time computable 𝑓: 𝒳 → 𝒴 such that for all 𝒜 ∈ 𝑃𝑃𝑇,

Pr [𝑓 𝒜 𝑓 𝑥 = 𝑓 𝑥 <
1

𝑝𝑜𝑙𝑦(𝑥)

One-way function, Goldreich-Levin Reduction

Claim (Discrete Log. is One-Way): Given 𝑓 𝑥 = 𝑥𝑎 𝑚𝑜𝑑 𝑁 , Pr[𝒜 𝑓(𝑥), 𝑥, 𝑁 = 𝑎] is small.

Claim (Factoring is One-Way): Given 𝑁 = 𝑝𝑞, Pr[𝒜 𝑁 ∈ {𝑝, 𝑞}] is small.

Conjectured Hard Functions

Key Takeaways:
- All classes are finite thus mathematically possible to break (by brute force)
- Erratic: polytime algorithms can’t distinguish a hard-core bit from pure randomness!

Attacking as Learning

• Property: Even with best case dataset, polytime attacker has no edge on 𝑓−1: even worse on average!

One-way function, machine learning

Is there a relaxation of security that is hard in poly-time,
but defeated with more compute

Is there a set of behaviors that is hard to learn efficiently,
but easy to learn otherwise

One-Way Functions?

Question: What does it mean to learn a set of behaviors ?

Goal Questions

By the end of the talk, we’d like some insight into
• What does it mean to learn a behavior, be learnable?

• How does ‘learning theory’ differ from ‘statistics’?

• What does it mean to (run-time) efficiently learn?

• Can one-way functions be efficiently learnable?

• (**) How do one-way results influence other structures, like Boolean circuits?

Learning a Threshold

0 10𝑐∗

(English) Setup:
- User adds movies to watchlist if they are above some rating
- After observing 𝑚 many decisions, learn a recommendation

Truth classifier

0 10

User Decisions, 𝑚 = 6

Let’s look at a simple behavior that can be learned…

Question: Given the decisions, how should we recommend?

Learning a Threshold

0 10𝑐∗

ℱ = { 1 𝑥 ≥ 𝑐) 𝑐 ∈ [0, 10]}

(English) Setup:
- User adds movies to watchlist if they are above some rating
- After observing 𝑚 many decisions, learn a recommendation

(Formal) Setup:
- Ratings 𝒳 = [0, 10], Outputs 𝒴 = {0, 1}
- For some 𝑐∗, 𝑓 𝑥 = 1(𝑥 ≥ 𝑐∗)

Truth classifier

0 10

User Decisions

A simple behavior…

Question: Given the decisions, how should we guess a 𝑓 ∈ ℱ?

Learning a Threshold

0 10𝑐∗

ℱ = { 1 𝑥 ≥ 𝑐) 𝑐 ∈ [0, 10]}

(Formal) Setup:
- Ratings 𝒳 = [0, 10], Outputs 𝒴 = {0, 1}
- For some 𝑐∗, 𝑓 𝑥 = 1(𝑥 ≥ 𝑐∗)

Truth classifier

0 10

User Decisions

Question: Given the decisions, how should we a guess 𝑓 ∈ ℱ?

0 10

Learned Rule

𝑐′

Answer: Find the worst watchable movie!

Algorithm
𝑐′ ← 10
for 𝑥 ∈ 𝑆:
 if 𝑥 watched and 𝑥 ≤ 𝑐′, set 𝑐′ ← 𝑥
return 𝑐′

Question
- what is the runtime of Algorithm?
- what is the accuracy on 𝑆?
- what is the relationship between 𝑐′ and 𝑐∗?

Learning a Threshold

0 10𝑐∗

Truth classifier

0 10

User Decisions

Question: How does our guess perform?

0 10

Learned Rule

𝑐′

0 10

Discrepancy

𝑐′𝑐∗

Troublesome region: [𝑐∗, 𝑐′]…

Idea: If 𝑚 = |𝑆| grows, 𝑐∗, 𝑐′ becomes less significant…

Pr 𝑥 ∈ 𝑐∗, 𝑐′ → 0

Ideologically, this means we learn!

Algorithm
𝑐′ ← 10
for 𝑥 ∈ 𝑆:
 if 𝑥 ≥ c∗ and 𝑥 ≤ 𝑐′ , set 𝑐′ ← 𝑥
return 𝑐′

Learning a Threshold

0 10𝑐∗

Truth classifier

0 10

𝜖-tolerance

𝑑𝑐∗
Conjecture: If 𝑚 = |𝑆| grows, 𝑐∗, 𝑐′ becomes less significant…

Pr 𝑥 ∈ 𝑐∗, 𝑐′ → 0

Let 𝑑 be such that Pr 𝑥 ∈ 𝑐∗, 𝑑 ≤ 𝜖

Claim 1: If we receive any sample in 𝑐∗, 𝑑 , then Pr 𝑥 ∈ 𝑐∗, 𝑐′ ≤ 𝜖

Algorithm
𝑐′ ← 10
for 𝑥 ∈ 𝑆:
 if 𝑥 ≥ c∗ and 𝑥 ≤ 𝑐′ , set 𝑐′ ← 𝑥
return 𝑐′

Learning a Threshold

0 10𝑐∗

Truth classifier

0 10

𝜖-tolerance

𝑑𝑐∗
Conjecture: If 𝑚 = |𝑆| grows, 𝑐∗, 𝑐′ becomes less significant…

Pr 𝑥 ∈ 𝑐∗, 𝑐′ → 0

Let 𝑑 be such that Pr 𝑥 ∈ 𝑐∗, 𝑑 ≤ 𝜖

Claim 1: If we receive any sample in 𝑐∗, 𝑑 , then Pr 𝑥 ∈ 𝑐∗, 𝑐′ ≤ 𝜖

…then 𝑐′ ≤ 𝑑, so Pr 𝑥 ∈ 𝑐∗, 𝑐′ ≤ Pr 𝑥 ∈ 𝑐∗, 𝑑 ≤ 𝜖

Algorithm
𝑐′ ← 10
for 𝑥 ∈ 𝑆:
 if 𝑥 ≥ c∗ and 𝑥 ≤ 𝑐′ , set 𝑐′ ← 𝑥
return 𝑐′

Learning a Threshold

0 10𝑐∗

Truth classifier

0 10

𝜖-tolerance

𝑑𝑐∗
Conjecture: If 𝑚 = |𝑆| grows, 𝑐∗, 𝑐′ becomes less significant…

Pr 𝑥 ∈ 𝑐∗, 𝑐′ → 0

Let 𝑑 be such that Pr 𝑥 ∈ 𝑐∗, 𝑑 ≤ 𝜖

Claim 1: If we receive any sample in 𝑐∗, 𝑑 , then Pr 𝑥 ∈ 𝑐∗, 𝑐′ ≤ 𝜖

Claim 2: All samples miss with probability 1 − 𝜖 𝑚 ≤ 𝑒−𝜖𝑚

... since samples are i.i.d., the misses compound exponentially!

Algorithm
𝑐′ ← 10
for 𝑥 ∈ 𝑆:
 if 𝑥 ≥ c∗ and 𝑥 ≤ 𝑐′ , set 𝑐′ ← 𝑥
return 𝑐′

Learning a Threshold

0 10𝑐∗

Truth classifier

0 10

𝜖-tolerance

𝑑𝑐∗
Conjecture: If 𝑚 = |𝑆| grows, 𝑐∗, 𝑐′ becomes less significant…

Pr 𝑥 ∈ 𝑐∗, 𝑐′ → 0

Let 𝑑 be such that Pr 𝑥 ∈ 𝑐∗, 𝑑 ≤ 𝜖

Claim 1: If we receive any sample in 𝑐∗, 𝑑 , then Pr 𝑥 ∈ 𝑐∗, 𝑐′ ≤ 𝜖

Claim 2: All samples miss with probability 1 − 𝜖 𝑚 ≤ 𝑒−𝜖𝑚

Claim 3: If 𝑚 ≥
log(

1

𝛿
)

𝜖
, then we get a bad sample with prob. ≤ 𝛿

𝛿 ∈ [0, 1]𝜖 ∈ [0, 1]

𝑚
(𝜖

,𝛿
)

𝛿 = 0.1 𝜖 = 0.1
… just by solving 𝑒−𝜖𝑚 ≤ 𝛿

Algorithm
𝑐′ ← 10
for 𝑥 ∈ 𝑆:
 if 𝑥 ≥ c∗ and 𝑥 ≤ 𝑐′ , set 𝑐′ ← 𝑥
return 𝑐′

Learning a Threshold

0 10𝑐∗

Truth classifier
Algorithm

𝑐′ ← 10
for 𝑥 ∈ 𝑆:
 if 𝑥 ≥ c∗ and 𝑥 ≤ 𝑐′ , set 𝑐′ ← 𝑥
return 𝑐′

0 10

𝜖-tolerance

𝑑𝑐∗
Conjecture: If 𝑚 = |𝑆| grows, 𝑐∗, 𝑐′ becomes less significant…

Pr 𝑥 ∈ 𝑐∗, 𝑐′ → 0

Let 𝑑 be such that Pr 𝑥 ∈ 𝑐∗, 𝑑 ≤ 𝜖

Claim 1: If we receive any sample in 𝑐∗, 𝑑 , then Pr 𝑥 ∈ 𝑐∗, 𝑐′ ≤ 𝜖

Claim 2: All samples miss with probability 1 − 𝜖 𝑚 ≤ 𝑒−𝜖𝑚

Claim 3: If 𝑚 ≥
log(

1

𝛿
)

𝜖
, then we get a bad sample with prob. ≤ 𝛿

Conclusion: With 𝑚 ≥ log
1

𝛿
/𝜖 samples, our 𝑓 ∈ ℱ has error

at most 𝜖 with probability at least 1 − 𝛿!

(Proper) Learnability

Perfect secrecy, one-way function

LearnerNature

𝜖, 𝛿 ∈ (0, 1),
ℱ, 𝒳, 𝒴

computes 𝑚 𝜖, 𝛿

Runs 𝐴 on 𝑆 to
find best 𝑓

Queries 𝒪 to produce
{ 𝑥1, 𝑦1 , … , (𝑥𝑚, 𝑦𝑚)}

Setup: input domain 𝒳, output 𝒴 = {0, 1}, function class 𝓕 ⊂ {𝒇 ∶ 𝓧 → {𝟎, 𝟏} }

Learner: Computes 𝑚(𝜖, 𝛿), requests a dataset of that size, and finds best 𝑓 ∈ ℱ
for the sample.

𝑓𝐸𝑅𝑀 ∈ ℱ

Definition (Learnable Class): If, for any 𝜖, 𝛿 ∈ (0, 1) and any
distribution 𝒟: 𝒳 → 0, 1 there exists 𝑚 𝜖, 𝛿 such that protocol
output 𝑓𝐸𝑅𝑀 satisfies

Pr
𝑥∼𝒟

[𝑓𝐸𝑅𝑀 𝑥 ≠ 𝑦] ≤ 𝜖

with probability at least 1 − 𝛿, then ℱ is learnable.

- Distribution independent
- Non-asymptotic (finite samples)
- Provides a learning scheme
- Makes a statement about a whole function class

Theorem: The class of thresholds is learnable!

(Proper) Learnability

Perfect secrecy, one-way function

LearnerNature

𝜖, 𝛿 ∈ (0, 1),
ℱ, 𝒳, 𝒴

computes 𝑚 𝜖, 𝛿

Runs 𝐴 on 𝑆 to
find best 𝑓

Queries 𝒪 to produce
{ 𝑥1, 𝑦1 , … , (𝑥𝑚, 𝑦𝑚)}

𝑓𝐸𝑅𝑀 ∈ ℱ

Definition (Learnable Class): If, for any 𝜖, 𝛿 ∈ (0, 1) and any
distribution 𝒟: 𝒳 → 0, 1 there exists 𝑚 𝜖, 𝛿 such that protocol
output 𝑓𝐸𝑅𝑀 satisfies

Pr
𝑥∼𝒟

[𝑓𝐸𝑅𝑀 𝑥 ≠ 𝑦] ≤ 𝜖

with probability at least 1 − 𝛿, then ℱ is learnable.

- Distribution independent
- Non-asymptotic (finite samples)
- Provides a learning scheme
- Makes a statement about a whole function class

Theorem: The class of thresholds is learnable!

We’ve shown…

It’s also true:

Theorem: Any finite hypothesis class is learnable.

(In general, 𝑚 ≥ log
ℱ

𝛿
/𝜖…) ThresholdsOne-way functions

Corollary: One-way functions are learnable

Efficiently Learnable

Perfect secrecy, one-way function

LearnerNature

𝜖, 𝛿 ∈ (0, 1),
ℱ, 𝒳, 𝒴

computes 𝑚 𝜖, 𝛿

Runs 𝐴 on 𝑆 to
find best 𝑓

Queries 𝒪 to produce
{ 𝑥1, 𝑦1 , … , (𝑥𝑚, 𝑦𝑚)}

𝑓𝐸𝑅𝑀 ∈ ℱ

Definition (Efficient Learnability): A class that is learnable by an
algorithm with time complexity polynomial in log(

1

𝛿
) and 1/𝜖

Theorem: The class of thresholds is learnable efficiently!
We’ve shown…

Thresholds

Finite

Proof: Recall worst-watchable Algorithm

- Learnable with 𝑚 = 𝑂
log

1

𝛿

𝜖
 samples

- Runs in 𝑂(𝑚)

Rectangles

Halfspaces

Theorem (rest of this talk): There exists a finite
class that is not learnable efficiently!

Proof sketch: Suppose we could learn each digit in 𝑓−1
efficiently (binary class!), then we can reconstruct
𝑓−1(𝑥) efficiently and with good probability, thus
violating hardness.

3-CNFs

3-DNFs

Discrete Cube Root Assumption

𝑓𝑁 𝑥 = 𝑥3(𝑚𝑜𝑑 𝑁) where 𝑁 = 𝑝𝑞 is 𝑛 digits, and 3 ∤ (𝑝 − 1)(𝑞 − 1)

Theorem (RSA Correctness): 𝑓𝑁 permutes 𝑍𝑁
∗

𝑍𝑁
∗

𝑍𝑁
∗

𝑓𝑁

𝑓𝑁
−1

From the sample set, you can’t find permutation structure

Proof: 3𝑑 ≡ 1 (𝑚𝑜𝑑 𝜙 𝑁) exists uniquely by construction.
Inverse mapping 𝑓𝑁

−1 𝑦 = 𝑦𝑑 𝑚𝑜𝑑 𝜙 𝑁 by Euler Theorem.

Special case RSA function…

Theorem (RSA Decoding): 𝑓𝑁
−1 is computable efficiently, given 𝑑

Proof: Recall the squaring trick.

Assumption (RSA Security): 𝑓𝑁
−1 is hard to find given only

𝑁. In particular, 𝑓𝑁 is one-way

Suspicion: Π = { 𝜋: 𝑍𝑁
∗ → 𝑍𝑁

∗ } is hard to learn

Bitwise Dissection

𝑓𝑁 𝑥 = 𝑥3(𝑚𝑜𝑑 𝑁) where 𝑁 = 𝑝𝑞 is 𝑛 digits, and 3 ∤ (𝑝 − 1)(𝑞 − 1)

Special case RSA function…

Convert to a hard binary class – isolate 𝑓𝑁
−1digit by digit!

2 74 8 111 13 14

4 137 11 81 142

𝑓𝑁
−1

𝑓𝑁,𝑖
−1 𝑦 ≔ i-th digit 𝑓𝑁

−1 𝑦

𝑍15
∗

𝑓𝑁
−1

𝑓𝑁,0
−1

𝑓𝑁,1
−1

𝑓𝑁,2
−1

𝑓𝑁,3
−1

Π ℱ

Observation: Learning ℱ means learning a digit in the inverse

Suspicion: Π = { 𝜋: 𝑍𝑁
∗ → 𝑍𝑁

∗ } is hard to learn

𝑓𝑁,0
−1

𝑦 1 2 4 7 8 11 13 14

1 1 1 10000

ℱ cannot be efficiently learned
Recall ℱ from the previous slide, 𝑓𝑁,𝑖

−1 𝑦 1 ≤ 𝑖 ≤ 𝑛}

Observation: ℱ has finite size

Proof: 𝑁! permutations 𝑛 digit functions each.

Theorem: If ℱ is efficiently learnable, then we can reconstruct 𝐹𝑁
−1.

Algorithm
set 𝜖 ←

1

𝑛2 , 𝛿 ← 𝑂(
1

𝑛
)

generate 𝑚(𝜖, 𝛿) many samples (𝑦, 𝑓𝑁
−1 𝑦)

parse each sample into {𝑓𝑁,0
−1 𝑦 , 𝑓𝑁,1

−1 𝑦 , … , 𝑓𝑁,𝑛−1
−1 𝑦 }

for 𝑖 ∈ [𝑛]:
 run subroutine 𝒜 to learn (𝑦, 𝑓𝑁,𝑖

−1 𝑦) and get ℎ𝑖
−1

return (ℎ1
−1, ℎ2

−1, … , ℎ𝑛
−1)

Proof: Algorithm 𝒜 that 𝜖, 𝛿 -learns any digit function with
𝑚(𝜖, 𝛿) many samples

𝒰(𝑍𝑁
∗)

(𝑥1, 𝑓𝑁 𝑥1 , (𝑥2, 𝑓𝑁 𝑥2), … (𝑥𝑚, 𝑓𝑁 𝑥𝑚)

(𝑦1 𝑓𝑁
−1 𝑦1 , (𝑦2 𝑓𝑁

−1 𝑦2 … (𝑦𝑚 𝑓𝑁
−1(𝑦𝑚)

All steps are efficient!

𝒜

(𝑦1 𝑓𝑁,0
−1 𝑦1 , (𝑦2 𝑓𝑁,0

−1 𝑦2 … (𝑦𝑚 𝑓𝑁,0
−1(𝑦𝑚)

ℎ0
−1

swap

dissect

ℱ cannot be efficiently learned
Recall ℱ from the previous slide, 𝑓𝑁,𝑖

−1 𝑦 1 ≤ 𝑖 ≤ 𝑛}

Theorem: If ℱ is efficiently learnable, then we can reconstruct 𝐹𝑁
−1.

Algorithm
set 𝜖 ←

1

𝑛2 , 𝛿 ← 𝑂(
1

𝑛
)

generate 𝑚(𝜖, 𝛿) many samples (𝑦, 𝑓𝑁
−1 𝑦)

parse each sample into {𝑓𝑁,0
−1 𝑦 , 𝑓𝑁,1

−1 𝑦 , … , 𝑓𝑁,𝑛−1
−1 𝑦 }

for 𝑖 ∈ [𝑛]:
 run subroutine 𝒜 to learn (𝑦, 𝑓𝑁,𝑖

−1 𝑦) and get ℎ𝑖
−1

return (ℎ1
−1, ℎ2

−1, … , ℎ𝑛
−1)

Pr ℎ1
−1 𝑦′ ||ℎ2

−1 𝑦′ || ⋯ ||ℎ𝑛−1
−1 𝑦′ ≠ 𝐹𝑁

−1 𝑦 ≤ 𝑛 ⋅ 𝜖 =
1

𝑛

For each 𝑖, Pr ℎ𝑖
−1 𝑦′ ≠ 𝑓𝑁,𝑖

−1 𝑦′ ≤ 𝜖 = 1/𝑛2

So, we have learned a one-way function...

Conclusion
Recall ℱ from the previous slide, 𝑓𝑁,𝑖

−1 𝑦 1 ≤ 𝑖 ≤ 𝑛}

Theorem: If ℱ is efficiently learnable, then we can reconstruct 𝐹𝑁
−1.

Assumption: It’s not possible to reconstruct 𝐹𝑁
−1 efficiently

Conclusion: Under DCRA, the hypothesis class ℱ is not efficiently learnable

Thresholds

Finite

Rectangles

Halfspaces

3-CNFs

3-DNFs

ThresholdsOne-way functions

	Slide 1: Learning under Cryptographic Hardness
	Slide 2: Cryptographic Assumption
	Slide 3: Cryptographic Assumption
	Slide 4: Cryptographic Assumption
	Slide 5: Attacking as Learning
	Slide 6: Goal Questions
	Slide 7: Learning a Threshold
	Slide 8: Learning a Threshold
	Slide 9: Learning a Threshold
	Slide 10: Learning a Threshold
	Slide 11: Learning a Threshold
	Slide 12: Learning a Threshold
	Slide 13: Learning a Threshold
	Slide 14: Learning a Threshold
	Slide 15: Learning a Threshold
	Slide 16: (Proper) Learnability
	Slide 17: (Proper) Learnability
	Slide 18: Efficiently Learnable
	Slide 19: Discrete Cube Root Assumption
	Slide 20: Bitwise Dissection
	Slide 21: F cannot be efficiently learned
	Slide 22: F cannot be efficiently learned
	Slide 23: Conclusion

