Learning under
Cryptographic Hardness

By: Anish Jayant

Perfect secrecy, one-way function

Cryptographic Assumption

Is there an efficient protocol that is hard to break?

l [Shannon, 1946] l“computer science”

Is there a relaxation of security that is hard in poly-time?

For modern cryptography to be possible...

Definition (One-way function): A poly-time computable f: X — Y such that forall A € PPT,

PrIf(AF() =] < s

Throughout the talk, we assume one-way functions exist= P #= NP, RP #+# NP

One-way function, communication protocol

Cryptographic Assumption

For modern cryptography to be possible...

Definition (One-way function): A poly-time computable f: X = Y such that forall A € PPT,

Prf(A(f0) = f] < -

implies robustness to interactive attacker! (think about public-key...)

Has access) Has accessto
Alice

to one-way f aripon Clpher;f(x) €Y Hacker any A € PPT

. Views cipher

W requests data
repeatntimes __J Labels data rety R . .
rn (x! / uns A(F(x)|x;, f(x
n = poly(lxl) N f))) k7 ()
Tries to guess

——

message?: X a pre-image
Output grade

f&x) = f(%)

One-way function, Goldreich-Levin Reduction

Cryptographic Assumption

For modern cryptography to be possible...

Definition (One-way function): A poly-time computable f: X = Y such that forall A € PPT,

Prf(A(f0) = f] < -

Conjectured Hard Functions

Claim (Discrete Log. is One-Way): Given f(x) = x® (mod N), Pr[A(f(x),x,N) = a] is small.

Claim (Factoring is One-Way): Given N = pq, Pr[A(N) € {p, q}] is small.

Key Takeaways:
- All classes are finite thus mathematically possible to break (by brute force)
- Erratic: polytime algorithms can’t distinguish a hard-core bit from pure randomness!

One-way function, machine learning

Attacking as Learning

* Property: Even with best case dataset, polytime attacker has no edge on f‘lz even worse on average!

Question: What does it mean to learn a set of behaviors ?

Is there a set of behaviors that is hard to learn efficiently,
but easy to learn otherwise

!

One-Way Functions?

|

Is there a relaxation of security thatis hard in poly-time,
but defeated with more compute

Goal Questions

By the end of the talk, we’d like some insight into

 What does it mean to learn a behavior, be learnable?
* How does ‘learning theory’ differ from ‘statistics’?

* What does it mean to (run-time) efficiently learn?
* Can one-way functions be efficiently learnable?

* (**) How do one-way results influence other structures, like Boolean circuits?

Learning a Threshold

Truth classifier

Let’s look at a simple behavior that can be learned... 0 - 10
C
(English) Setup:
- Useradds movies to watchlist if they are above some rating User Decisions,m = 6
- After observing m many decisions, learn a recommendation
—0000 oo
0 10

Question: Given the decisions, how should we recommend?

Learning a Threshold

Truth classifier

A simple behavior... L

(English) Setup:
- Useradds movies to watchlist if they are above some rating User Decisions
- After observing m many decisions, learn a recommendation

—0000 s
0 10

(Formal) Setup:
- Ratings X = [0, 10], Outputs Y = {0, 1}
- Forsomec”, f(x) = 1(x = ¢¥)

F = {1(x = ¢)lc € [0,10]}

Question: Given the decisions, how should we guessa f € F?

Learning a Threshold

Question: Given the decisions, how should we a guess f € F?

(Formal) Setup:
- Ratings X = [0, 10], Outputs Y = {0, 1}
- Forsomec”, f(x) = 1(x = ¢¥)

F = {1(x = c)|c € [0,10]}

Answer: Find the worst watchable movie!

Algorithm
¢’ « 10
forx € S:
if x watchedand x < ¢, setc¢’ « x
return ¢’
Question

- what is the runtime of Algorithm?
- whatis theaccuracyonS?
- what is the relationship between ¢’ and ¢*?

Truth classifier

——

0

Cc

User Decisions

—0000

0

Learned Rule

10

10

e

0

10

Learning a Threshold

Question: How does our guess perform?

Algorithm
¢’ « 10
forx € S:
ifx>c*andx <c¢',setc’ « x
return ¢’

Troublesome region: [c*, c']...

Idea: If m = |S| grows, [c¢*, ¢'| becomes less significant...

Pr[x € [c*,c']] -0

Ideologically, this means we learn!

Truth classifier

——

0 c

User Decisions |i

10

—0000
0

Learned Rule

0

Discrepancy

10

Learning a Threshold

Algorithm
¢« 10
forx € S:
ifx >c*andx < c¢',setc’ «x
return ¢’

Conjecture: If m = |S| grows, [c*, ¢'] becomes less significant...
Pr[x S [c*,c’]] -0
Let d be such that Pr|x € [c*,d]]| < ¢

Claim 1: If we receive any sample in [c*, d], then Pr[x € [c7, C’]] <e

Truth classifier

0

e-tolerance

Learning a Threshold

Algorithm
¢« 10
forx € S:
ifx >c*andx < c¢',setc’ «x
return ¢’

Conjecture: If m = |S| grows, [c*, ¢'] becomes less significant...
Pr[x S [c*,c’]] -0
Let d be such that Pr|x € [c*,d]]| < ¢

Claim 1: If we receive any sample in [c*, d], then Pr[x € [c7, C’]] <e

.thenc’ <d,soPr|x € [c*,c']] < Pr[x € [c*,d]] <¢

Truth classifier

0

e-tolerance

Learning a Threshold

Algorithm
¢« 10
forx € S:
ifx >c*andx < c¢',setc’ «x
return ¢’

Conjecture: If m = |S| grows, [c*, ¢'] becomes less significant...
Pr[x S [c*,c’]] -0

Let d be such that Pr|x € [c*,d]]| < ¢

Claim 1: If we receive any sample in [c*, d], then Pr[x € [c7, C’]] <e

Claim 2: All samples miss with probability (1 — €)™ < e~™

... since samples are i.i.d., the misses compound exponentially!

Truth classifier

e-tolerance

Learning a Threshold

Algorithm
¢« 10
forx € S:
ifx >c*andx <c¢',setc’ «x
return ¢’

Conjecture: If m = |S| grows, [c*, ¢'] becomes less significant...
Pr[x S [c*,c’]] -0

Let d be such that Pr|x € [c*,d]]| < ¢

Claim 1: If we receive any sample in [c*, d], then Pr[x € [c7, C’]] <e

Claim 2: All samples miss with probability (1 — €)™ < e~™

log(3)

Claim3:Ifm > , then we get a bad sample with prob. < §

... just by solvinge ™ < §

Truth classifier

e-tolerance

m(e, 0)

e € [0,1] d €[0,1]
6 =0.1 e =0.1

Learning a Threshold

Algorithm
¢« 10
forx € S:
ifx >c*andx <c¢',setc’ «x
return ¢’

Conjecture: If m = |S| grows, [c*, ¢'] becomes less significant...
Pr[x S [c*,c’]] -0

Let d be such that Pr|x € [c*,d]]| < ¢

Claim 1: If we receive any sample in [c*, d], then Pr[x € [c7, C’]] <e

Claim 2: All samples miss with probability (1 — €)™ < e~™

log(3)

Claim3:Ifm > , then we get a bad sample with prob. < §

Conclusion: Withm = log (%) /e samples, our f € F has error
at most € with probability atleast 1 — ¢!

Truth classifier

e-tolerance

(Proper) Learnability

Setup: input domain X, output Y = {0, 1}, functionclass F c {f : X — {0,1} }

Perfect secrecy, one-way function

~

€,0 € (0,1),
Learner: Computes m(e, 6), requests a dataset of that size, and finds best f € F F,xX,Y
for the sample. / J
Nature 5) Learner
Definition (Learnable Class): If,foranye¢, 6 € (0,1) and any . ‘W computes m(e, §)
distribution D: X = [0, 1] there exists m(¢, §) such that protocol | Queries 0 to produce

i ofi (X1, Y1), s (X
output fzr) satisfies {Cx, 01 Xm Ym)} \ Run n
uns Aon S to

xlzg)[fERM(x) #y| <€ _

find best f

/

with probability at least 1 — 6, then F is learnable.

- Distribution independent

- Non-asymptotic (finite samples)

- Provides a learning scheme

- Makes a statement about a whole function class

Theorem: The class of thresholds is learnable!

ferm €F

Perfect secrecy, one-way function

(Proper) Learnability €8 €OD)
F,X,Y
Definition (Learnable Class): If, forany €,6 € (0,1) and any -
distribution D: X - [0, 1] there exists m(¢, &) such that protocol / \
s Nature Learner
output frr satisfies

Pr (i (0 # y] <€

with probability at least 1 — 6, then F is learnable.

m= m(éE 5) computes m(e, §)
Queries O to produce /

Distribution independent

Non-asymptotic (finite samples)

Provides a learning scheme

Makes a statement about a whole function class

We’ve shown...

Theorem: The class of thresholds is learnable!

It’s also true:

Theorem: Any finite hypothesis class is learnable.
(In general, m = log (?) J€...)

Corollary: One-way functions are learnable

{(xl' yl): L) (xm; ym)} S
K find best f /

|

ferm € F

One-way functions

Perfect secrecy, one-way function

Efficiently Learnable €5 € (0,1),
F,X,Y

Definition (Efficient Learnability): A class thatis learnable by an / ! \
: L e : . 1
algorithm with time complexity polynomialin log(g) and1/e Nature Learner
We’ve shown... ‘W@»& computes m(e, §)
Theorem: The class of thresholds is learnable efficiently! Querles O'to produce .
Proof. Recall worst-watchable Algorithm \ Runs A Or}S to
find best
log(+
- Learnable withm = O (g—6(5)> samples K /
- Runsin O(m)
ferm € F
Theorem (rest of this talk): There exists a finite 3-CNFs
class that is not learnable efficiently! ceS \

Proof sketch: Suppose we could learn each digit in f‘1
efficiently (binary class!), then we can reconstruct
f~1(x) efficiently and with good probability, thus
violating hardness.

Rectangles

Halfspaces

Thresholds

Discrete Cube Root Assumption Z

Special case RSA function...

fn(x) = x3(mod N) where N = pq isn digits,and 3 + (p — 1)(q — 1)
fn
Theorem (RSA Correctness): fy permutes Zy M
Proof: 3d = 1 (mod ¢(N)) exists uniquely by construction. il
Inverse mapping fiy 1 (y) = y¢ (mod ¢(N)) by Euler Theorem. |

Theorem (RSA Decoding): fy * is computable efficiently, given d

|
Zy

From the sample set, you can’t find permutation structure

Proof: Recall the squaring trick.

Assumption (RSA Security): fﬁl is hard to find given only
N. In particular, fy is one-way

Suspicion:I1 = {m: Zy — Zy}ishardto learn

Bitwise Dissection P

N,0
Special case RSA function... 4
fni
fn(x) = x3(mod N) where N = pq isn digits,and 3 + (p — 1)(q — 1) I . fil — T
fn2
Suspicion:I1 = {m: Zy — Zy}is hardto learn
fus

Convert to a hard binary class —isolate f,\fldigit by digit!

*k
Zys

|
{ \
00000000 + : 010
fnt

1\7,1'1()’) = 1-th digit f,\fl(y) Observation: Learning F means learning a digit in the inverse

F cannot be efficiently learned

Recall F from the previous slide, {fy{(»)|1 < i < n}
Observation: F has finite size
Proof: N! permutations n digit functions each.

Theorem: If F is

Proof:

, then we can reconstruct Fy .

Algorithm
1 1
;, O « 0(;)
generate m(e, §) many samples (y, fv ()
parse each sample into {fy), fu 13, ., fyn—1(¥)}
fori € [n]:
run subroutine A to learn (y, fy; (¥)) and get k"
return (h71, AL .. A D)

sete «

(n f o), (v fir

U(Zy)

/I\A

((x1:f1v(x1)): (x2, fn(x2)), oo (X, [(X))

swap

\

\ 4

152)) o (G S)

dissect

(v i3). (2 fh D) - (Y fid i)

All steps are efficient!

$ A

hyt

I

F cannot be efficiently learned

Recall F from the previous slide, {fy{(»)|1 < i < n}

Theorem: If F is , then we can reconstruct F,\71.

Algorithm
1 1
w20 00)
generate m(e,) many samples (v, fiy 1 (¥))
parse each sample into {fy (), fu1(¥), ., fym—1(¥)}
fori € [n]:

run subroutine A to learn (y, fy i (¥)) and get h; !

return (hi, hy1L, ..., hY)

sete «

Foreach i, Pr[hj(y") # fyt(y")] < € = 1/n?

S|

Prlas ORI - [1ha2 () # Fy' ()] <n-e =

So, we have learned a one-way function...

Conclusion

Recall F from the previous slide, {fy{(»)|1 < i < n}

Theorem: If F is , then we can reconstruct F,\71.

Assumption: It’s not possible to reconstruct F,\71 efficiently

Conclusion: Under DCRA, the hypothesis class F is not efficiently learnable

3-CNFs

Thresholds

One-way functions
Rectangles

Halfspaces

Thresholds

	Slide 1: Learning under Cryptographic Hardness
	Slide 2: Cryptographic Assumption
	Slide 3: Cryptographic Assumption
	Slide 4: Cryptographic Assumption
	Slide 5: Attacking as Learning
	Slide 6: Goal Questions
	Slide 7: Learning a Threshold
	Slide 8: Learning a Threshold
	Slide 9: Learning a Threshold
	Slide 10: Learning a Threshold
	Slide 11: Learning a Threshold
	Slide 12: Learning a Threshold
	Slide 13: Learning a Threshold
	Slide 14: Learning a Threshold
	Slide 15: Learning a Threshold
	Slide 16: (Proper) Learnability
	Slide 17: (Proper) Learnability
	Slide 18: Efficiently Learnable
	Slide 19: Discrete Cube Root Assumption
	Slide 20: Bitwise Dissection
	Slide 21: F cannot be efficiently learned
	Slide 22: F cannot be efficiently learned
	Slide 23: Conclusion

